169 resultados para SiO2 films
em Queensland University of Technology - ePrints Archive
Resumo:
The effect of a SiO2 nanolayer and annealing temperature on the UV/visible room-temperature photoluminescence (PL) from SiNx films synthesized by rf magnetron sputtering is studied. The PL intensity can be maximized when the SiO2 layer is 510 nm thick at 800 °C annealing temperature and only 2 nm at 1000 °C. A compositionstructureproperty analysis reveals that the PL intensity is directly related to both the surface chemical states and the content of the SiO and SiN bonds in the SiNx films. These results are relevant for the development of advanced optoelectronic and photonic emitters and sensors. © 2010 Elsevier B.V. All rights reserved.
Resumo:
Thermally stable mesoporous TiO2/SiO2 hybrid films with pore size of 50 nm have been synthesized by adopting the polymeric micelle-assembly method. A triblock copolymer, poly(styrene-b-2-vinyl pyridine-b-ethylene oxide), which serves as a template for the mesopores, was utilized to form polymeric micelles. The effective interaction of titanium tetraisopropoxide (TTIP) and tetraethyl orthosilicate (TEOS) with the polymeric micelles enabled us to fabricate stable mesoporous films. By changing the molar ratio of TEOS and TTIP, several mesoporous TiO2/SiO2 hybrid films with different compositions can be synthesized. The presence of amorphous SiO2 phase effectively retards the growth of anatase TiO2 crystal in the pore walls and retains the original mesoporous structure, even at higher temperature (650 °C). These TiO2/SiO2 hybrid films are of very high quality, without any cracks or voids. The addition of SiO2 phase to mesoporous TiO2 films not only adsorbs more organic dyes, but also significantly enhances the photocatalytic activity compared to mesoporous pure TiO2 film without SiO2 phase.
Resumo:
Carbon-doped hydrogenated silicon oxide (SiOCH) low-k films have been prepared using 13.56 MHz discharge in trimethylsilane (3MS) - oxygen gas mixtures at 3, 4, and 5 Torr sustained with RF power densities 1.3 - 2.6 W/cm2. The atomic structure of the SiOCH films appears to be a mixture the amorphous SiO2-like and the partially polycrystalline SiC-like phases. Results of the infra-red spectroscopy reflect the increment in the volume fraction of the SiC-like phase from 0.22 - 0.28 to 0.36 - 0.39 as the RF power increment. Steady-state near-UV laser-excited (364 nm wavelength, 40±2 mW) photoluminescence (PL) has been studied at room temperatures in the visible (1.8 eV - 3.1 eV) subrange of photon spectrum. Two main bands of the PL signal (at the photon energies of 2.5 - 2.6 eV and 2.8 - 2.9 eV) are observed. Intensities of the both bands are changed monotonically with RF power, whereas the bandwidth of ∼0.1 eV remains almost invariable. It is likely that the above lines are dumped by the non-radiative recombination involving E1-like centres in the amorphous-nanocrystalline SiC-like phases. Such explanation of the PL intensity dependences on the RF power density is supported by results of experimental studies of defect states spectrum in bandgap of the SiOCH films.
Resumo:
Results of experimental investigations on the relationship between nanoscale morphology of carbon doped hydrogenated silicon-oxide (SiOCH) low-k films and their electron spectrum of defect states are presented. The SiOCH films have been deposited using trimethylsilane (3MS) - oxygen mixture in a 13.56 MHz plasma enhanced chemical vapor deposition (PECVD) system at variable RF power densities (from 1.3 to 2.6 W/cm2) and gas pressures of 3, 4, and 5 Torr. The atomic structure of the SiOCH films is a mixture of amorphous-nanocrystalline SiO2-like and SiC-like phases. Results of the FTIR spectroscopy and atomic force microscopy suggest that the volume fraction of the SiC-like phase increases from ∼0.2 to 0.4 with RF power. The average size of the nanoscale surface morphology elements of the SiO2-like matrix can be controlled by the RF power density and source gas flow rates. Electron density of the defect states N(E) of the SiOCH films has been investigated with the DLTS technique in the energy range up to 0.6 eV from the bottom of the conduction band. Distinct N(E) peaks at 0.25 - 0.35 eV and 0.42 - 0.52 eV below the conduction band bottom have been observed. The first N(E) peak is identified as originated from E1-like centers in the SiC-like phase. The volume density of the defects can vary from 1011 - 1017 cm-3 depending on specific conditions of the PECVD process.
Resumo:
Cultural policy settings attempting to foster the growth and development of the Australian feature film industry in era of globalisation are coming under increasing pressure. Global forces and emerging production and distribution models are challenging the “narrowness” of cultural policy – mandating a particular film culture, circumscribing certain notions of value and limiting the variety of films produced through cultural policy driven subvention models. Australian horror film production is an important case study. Horror films are a production strategy well suited to the financial limitations of the Australian film industry with competitive advantages for producers against international competitors. However, emerging within a “national” cinema driven by public subsidy and social/cultural objectives, horror films – internationally oriented with a low-culture status – have been severely marginalised within public funding environments. This paper introduces Australian horror film production, and examines the limitations of cultural policy, and the impacts of these questions for the Producer Offset.
Resumo:
This article explores how adult paid work is portrayed in 'family' feature length films. The study extends previous critical media literature which has overwhelmingly focused on depictions of gender and violence, exploring the visual content of films that is relevant to adult employment. Forty-two G/PG films were analyzed for relevant themes. Consistent with the exploratory nature of the research, themes emerged inductively from the films' content. Results reveal six major themes: males are more visible in adult work roles than women; the division of labour remains gendered; work and home are not mutually exclusive domains; organizational authority and power is wielded in punitive ways; there are avenues to better employment prospects; and status/money is paramount. The findings of the study reflect a range of subject matters related to occupational characteristics and work-related communication and interactions which are typically viewed by children in contemporary society.
Resumo:
Cultural policy that attempts to foster the Australian film industry’s growth and development in an era of globalisation is coming under increasing pressure. Throughout the 2000s, there has been a substantial boom in Australian horror films led by ‘runaway’ horror film Saw (2004), Wolf Creek (2005), and Undead (2003), achieving varying levels of popularity and commercial success worldwide. However, emerging within a national cinema driven by public subsidy and valuing ‘quality’ and ‘cultural content’ over ‘entertainment’ and ‘commercialism’, horror films have generally been antithetical to these objectives. Consequently, the recent boom in horror films has occurred largely outside the purview and subvention of cultural policy. This paper argues that global forces and emerging production and distribution models are challenging the ‘narrowness’ of cultural policy – a narrowness that mandates a particular film culture, circumscribes certain notions of value and limits the variety of films produced domestically. Despite their low-culture status, horror films have been well suited to the Australian film industry’s financial limitations, they are a growth strategy for producers, and a training ground for emerging filmmakers.
Resumo:
An interpretative methodology for understanding meaning in cinema since the 1950s, auteur analysis is an approach to film studies in which an individual, usually the director, is studied as the author of her or his films. The principal argument of this thesis is that proponents of auteurism have privileged examination of the visual components in a film-maker’s body of work, neglecting the potentially significant role played by sound. The thesis seeks to address this problematic imbalance by interrogating the creative use of sound in the films written and directed by Rolf de Heer, asking the question, “Does his use of sound make Rolf de Heer an aural auteur?” In so far as the term ‘aural’ encompasses everything in the film that is heard by the audience, the analysis seeks to discover if de Heer has, as Peter Wollen suggests of the auteur and her or his directing of the visual components (1968, 1972 and 1998), unconsciously left a detectable aural signature on his films. The thesis delivers an innovative outcome by demonstrating that auteur analysis that goes beyond the mise-en-scène (i.e. visuals) is productive and worthwhile as an interpretive response to film. De Heer’s use of the aural point of view and binaural sound recording, his interest in providing a ‘voice’ for marginalised people, his self-penned song lyrics, his close and early collaboration with composer Graham Tardif and sound designer Jim Currie, his ‘hands-on’ approach to sound recording and sound editing and his predilection for making films about sound are all shown to be examples of de Heer’s aural auteurism. As well as the three published (or accepted for publication) interviews with de Heer, Tardif and Currie, the dissertation consists of seven papers refereed and published (or accepted for publication) in journals and international conference proceedings, a literature review and a unifying essay. The papers presented are close textual analyses of de Heer’s films which, when considered as a whole, support the thesis’ overall argument and serve as a comprehensive auteur analysis, the first such sustained study of his work, and the first with an emphasis on the aural.
Resumo:
Tungsten trioxide is one of the potential semiconducting materials used for sensing NH3, CO, CH4 and acetaldehyde gases. The current research aims at development, microstructural characterization and gas sensing properties of thin films of Tungsten trioxide (WO3). In this paper, we intend to present the microstructural characterization of these films as a function of post annealing heat treatment. Microstructural and elemental analysis of electron beam evaporated WO3 thin films and iron doped WO3 films (WO3:Fe) have been carried out using analytical techniques such as Transmission electron microscopy, Rutherford Backscattered Spectroscopy and XPS analysis. TEM analysis revealed that annealing at 300oC for 1 hour improves cyrstallinity of WO3 film. Both WO3 and WO3:Fe films had uniform thickness and the values corresponded to those measured during deposition. RBS results show a fairly high concentration of oxygen at the film surface as well as in the bulk for both films, which might be due to adsorption of oxygen from atmosphere or lattice oxygen vacancy inherent in WO3 structure. XPS results indicate that tungsten exists in 4d electronic state on the surface but at a depth of 10 nm, both 4d and 4f electronic states were observed. Atomic force microscopy reveals nanosize particles and porous structure of the film. This study shows e-beam evaporation technique produces nanoaparticles and porous WO3 films suitable for gas sensing applications and doping with iron decreases the porosity and particle size which can help improve the gas selectivity.
Resumo:
Pure and Iron incorporated nanostructured Tungsten Oxide (WO3) thin films were investigated for gas sensing applications using noise spectroscopy. The WO3 sensor was able to detect lower concentrations (1 ppm-10 ppm) of NH3, CO, CH4 and Acetaldehyde gases at higher operating temperatures between 100oC to 250oC. The response of the WO3 sensor to NH3, CH4 and Acetaldehyde at lower temperatures (50oC-100oC) was significant when the sensor was photo-activated using blue-light emitting diode (Blue-LED). The WO3 with Fe (WO3:Fe) was found to show some response to Acetaldehyde gas only at relatively higher operating temperature (250oC) and gas concentration of 10 ppm.