557 resultados para Reasoning under Uncertainty

em Queensland University of Technology - ePrints Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes the formalization and application of a methodology to evaluate the safety benefit of countermeasures in the face of uncertainty. To illustrate the methodology, 18 countermeasures for improving safety of at grade railroad crossings (AGRXs) in the Republic of Korea are considered. Akin to “stated preference” methods in travel survey research, the methodology applies random selection and laws of large numbers to derive accident modification factor (AMF) densities from expert opinions. In a full Bayesian analysis framework, the collective opinions in the form of AMF densities (data likelihood) are combined with prior knowledge (AMF density priors) for the 18 countermeasures to obtain ‘best’ estimates of AMFs (AMF posterior credible intervals). The countermeasures are then compared and recommended based on the largest safety returns with minimum risk (uncertainty). To the author's knowledge the complete methodology is new and has not previously been applied or reported in the literature. The results demonstrate that the methodology is able to discern anticipated safety benefit differences across candidate countermeasures. For the 18 at grade railroad crossings considered in this analysis, it was found that the top three performing countermeasures for reducing crashes are in-vehicle warning systems, obstacle detection systems, and constant warning time systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In dynamic and uncertain environments such as healthcare, where the needs of security and information availability are difficult to balance, an access control approach based on a static policy will be suboptimal regardless of how comprehensive it is. The uncertainty stems from the unpredictability of users’ operational needs as well as their private incentives to misuse permissions. In Role Based Access Control (RBAC), a user’s legitimate access request may be denied because its need has not been anticipated by the security administrator. Alternatively, even when the policy is correctly specified an authorised user may accidentally or intentionally misuse the granted permission. This paper introduces a novel approach to access control under uncertainty and presents it in the context of RBAC. By taking insights from the field of economics, in particular the insurance literature, we propose a formal model where the value of resources are explicitly defined and an RBAC policy (entailing those predictable access needs) is only used as a reference point to determine the price each user has to pay for access, as opposed to representing hard and fast rules that are always rigidly applied.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ultimate goal of an access control system is to allocate each user the precise level of access they need to complete their job - no more and no less. This proves to be challenging in an organisational setting. On one hand employees need enough access to the organisation’s resources in order to perform their jobs and on the other hand more access will bring about an increasing risk of misuse - either intentionally, where an employee uses the access for personal benefit, or unintentionally, through carelessness or being socially engineered to give access to an adversary. This thesis investigates issues of existing approaches to access control in allocating optimal level of access to users and proposes solutions in the form of new access control models. These issues are most evident when uncertainty surrounding users’ access needs, incentive to misuse and accountability are considered, hence the title of the thesis. We first analyse access control in environments where the administrator is unable to identify the users who may need access to resources. To resolve this uncertainty an administrative model with delegation support is proposed. Further, a detailed technical enforcement mechanism is introduced to ensure delegated resources cannot be misused. Then we explicitly consider that users are self-interested and capable of misusing resources if they choose to. We propose a novel game theoretic access control model to reason about and influence the factors that may affect users’ incentive to misuse. Next we study access control in environments where neither users’ access needs can be predicted nor they can be held accountable for misuse. It is shown that by allocating budget to users, a virtual currency through which they can pay for the resources they deem necessary, the need for a precise pre-allocation of permissions can be relaxed. The budget also imposes an upper-bound on users’ ability to misuse. A generalised budget allocation function is proposed and it is shown that given the context information the optimal level of budget for users can always be numerically determined. Finally, Role Based Access Control (RBAC) model is analysed under the explicit assumption of administrators’ uncertainty about self-interested users’ access needs and their incentives to misuse. A novel Budget-oriented Role Based Access Control (B-RBAC) model is proposed. The new model introduces the notion of users’ behaviour into RBAC and provides means to influence users’ incentives. It is shown how RBAC policy can be used to individualise the cost of access to resources and also to determine users’ budget. The implementation overheads of B-RBAC is examined and several low-cost sub-models are proposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Morris' (1986) analysis of the factors affecting project success and failure is considered in relation to the psychology of judgement under uncertainty. A model is proposed whereby project managers may identify the specific circumstances in which human decision-making is prone to systematic error, and hence may apply a number of de-biasing techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis examines how the initial institutional and technological aspects of the economy and the reforms that alter these aspects influence long run growth and development. These issues are addressed in the framework of stochastic endogenous growth models and an empirical framework. The thesis is able to explain why developing nations exhibit diverse growth and inequality patterns. Consequently, the thesis raises a number of policy implications regarding how these nations can improve their economic outcomes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We examine the role of politico-economic influences on macroeconomic performance within the framework of an endogenous growth model with costly technology adoption and uncertainty. The model is aimed at understanding the diversity in growth and inequality experiences across countries. Agents adopt either of two risky technologies, one of which is only available through financial intermediaries, who are able to alleviate some of this risk. The entry cost of financial intermediation depends on the proportion of government revenue that is allocated towards cost-reducing financial development expenditure, and agents vote on this proportion. The results show that agents at the top and bottom ends of the distribution prefer alternative means of re-distribution, thereby effectively blocking the allocation of resources towards cost-reducing financial development expenditure. Thus political factors have a role in delaying financial and capital deepening and economic development. Furthermore, the model provides a political-economy perspective on the Kuznets curve; uncertainty interacts with the political economy mechanism to produce transitional inequality patterns that, depending on initial conditions, can unearth the Kuznets-curve experience. Finally, the political outcomes are inefficient relative to policies aimed at maximizing the collective welfare of agents in the economy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the main challenges facing online and offline path planners is the uncertainty in the magnitude and direction of the environmental energy because it is dynamic, changeable with time, and hard to forecast. This thesis develops an artificial intelligence for a mobile robot to learn from historical or forecasted data of environmental energy available in the area of interest which will help for a persistence monitoring under uncertainty using the developed algorithm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Engineers and asset managers must often make decisions on how to best allocate limited resources amongst different interrelated activities, including repair, renewal, inspection, and procurement of new assets. The presence of project interdependencies and the lack of sufficient information on the true value of an activity often produce complex problems and leave the decision maker guessing about the quality and robustness of their decision. In this paper, a decision support framework for uncertain interrelated activities is presented. The framework employs a methodology for multi-criteria ranking in the presence of uncertainty, detailing the effect that uncertain valuations may have on the priority of a particular activity. The framework employs employing semi-quantitative risk measures that can be tailored to an organisation and enable a transparent and simple-to-use uncertainty specification by the decision maker. The framework is then demonstrated on a real world project set from a major Australian utility provider.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bayesian networks (BNs) are graphical probabilistic models used for reasoning under uncertainty. These models are becoming increasing popular in a range of fields including ecology, computational biology, medical diagnosis, and forensics. In most of these cases, the BNs are quantified using information from experts, or from user opinions. An interest therefore lies in the way in which multiple opinions can be represented and used in a BN. This paper proposes the use of a measurement error model to combine opinions for use in the quantification of a BN. The multiple opinions are treated as a realisation of measurement error and the model uses the posterior probabilities ascribed to each node in the BN which are computed from the prior information given by each expert. The proposed model addresses the issues associated with current methods of combining opinions such as the absence of a coherent probability model, the lack of the conditional independence structure of the BN being maintained, and the provision of only a point estimate for the consensus. The proposed model is applied an existing Bayesian Network and performed well when compared to existing methods of combining opinions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents a robust place recognition algorithm for mobile robots. The framework proposed combines nonlinear dimensionality reduction, nonlinear regression under noise, and variational Bayesian learning to create consistent probabilistic representations of places from images. These generative models are learnt from a few images and used for multi-class place recognition where classification is computed from a set of feature-vectors. Recognition can be performed in near real-time and accounts for complexity such as changes in illumination, occlusions and blurring. The algorithm was tested with a mobile robot in indoor and outdoor environments with sequences of 1579 and 3820 images respectively. This framework has several potential applications such as map building, autonomous navigation, search-rescue tasks and context recognition.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Motion planning for planetary rovers must consider control uncertainty in order to maintain the safety of the platform during navigation. Modelling such control uncertainty is difficult due to the complex interaction between the platform and its environment. In this paper, we propose a motion planning approach whereby the outcome of control actions is learned from experience and represented statistically using a Gaussian process regression model. This mobility prediction model is trained using sample executions of motion primitives on representative terrain, and predicts the future outcome of control actions on similar terrain. Using Gaussian process regression allows us to exploit its inherent measure of prediction uncertainty in planning. We integrate mobility prediction into a Markov decision process framework and use dynamic programming to construct a control policy for navigation to a goal region in a terrain map built using an on-board depth sensor. We consider both rigid terrain, consisting of uneven ground, small rocks, and non-traversable rocks, and also deformable terrain. We introduce two methods for training the mobility prediction model from either proprioceptive or exteroceptive observations, and report results from nearly 300 experimental trials using a planetary rover platform in a Mars-analogue environment. Our results validate the approach and demonstrate the value of planning under uncertainty for safe and reliable navigation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

What type of probability theory best describes the way humans make judgments under uncertainty and decisions under conflict? Although rational models of cognition have become prominent and have achieved much success, they adhere to the laws of classical probability theory despite the fact that human reasoning does not always conform to these laws. For this reason we have seen the recent emergence of models based on an alternative probabilistic framework drawn from quantum theory. These quantum models show promise in addressing cognitive phenomena that have proven recalcitrant to modeling by means of classical probability theory. This review compares and contrasts probabilistic models based on Bayesian or classical versus quantum principles, and highlights the advantages and disadvantages of each approach.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis explored the impact of non-contractual agreements in economic decisions. These statements of intent serve as a commitment device in strategic decisions and have been found to be an effective alternative to strong regulations in promoting social behaviour. Three studies have been undertaken using conceptual and methodological approaches from Behavioral and Experimental Economics. The first study explored in a public good setting the effect of public statements about intended social behaviour. The second study tested whether promises can help to promote co-operation in environments with uncertain choice options. The third study investigated a possible application of statement of intent and tested the effect of payment promises in a tax setting.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Risks and uncertainties are inevitable in engineering projects and infrastructure investments. Decisions about investment in infrastructure such as for maintenance, rehabilitation and construction works can pose risks, and may generate significant impacts on social, cultural, environmental and other related issues. This report presents the results of a literature review of current practice in identifying, quantifying and managing risks and predicting impacts as part of the planning and assessment process for infrastructure investment proposals. In assessing proposals for investment in infrastructure, it is necessary to consider social, cultural and environmental risks and impacts to the overall community, as well as financial risks to the investor. The report defines and explains the concept of risk and uncertainty, and describes the three main methodology approaches to the analysis of risk and uncertainty in investment planning for infrastructure, viz examining a range of scenarios or options, sensitivity analysis, and a statistical probability approach, listed here in order of increasing merit and complexity. Forecasts of costs, benefits and community impacts of infrastructure are recognised as central aspects of developing and assessing investment proposals. Increasingly complex modelling techniques are being used for investment evaluation. The literature review identified forecasting errors as the major cause of risk. The report contains a summary of the broad nature of decision-making tools used by governments and other organisations in Australia, New Zealand, Europe and North America, and shows their overall approach to risk assessment in assessing public infrastructure proposals. While there are established techniques to quantify financial and economic risks, quantification is far less developed for political, social and environmental risks and impacts. The report contains a summary of the broad nature of decision-making tools used by governments and other organisations in Australia, New Zealand, Europe and North America, and shows their overall approach to risk assessment in assessing public infrastructure proposals. While there are established techniques to quantify financial and economic risks, quantification is far less developed for political, social and environmental risks and impacts. For risks that cannot be readily quantified, assessment techniques commonly include classification or rating systems for likelihood and consequence. The report outlines the system used by the Australian Defence Organisation and in the Australian Standard on risk management. After each risk is identified and quantified or rated, consideration can be given to reducing the risk, and managing any remaining risk as part of the scope of the project. The literature review identified use of risk mapping techniques by a North American chemical company and by the Australian Defence Organisation. This literature review has enabled a risk assessment strategy to be developed, and will underpin an examination of the feasibility of developing a risk assessment capability using a probability approach.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A study has been conducted to investigate current practices on decision-making under risk and uncertainty for infrastructure project investments. It was found that many European countries such as the UK, France, Germany including Australia use scenarios for the investigation of the effects of risk and uncertainty of project investments. Different alternative scenarios are mostly considered during the engineering economic cost-benefit analysis stage. For instance, the World Bank requires an analysis of risks in all project appraisals. Risk in economic evaluation needs to be addressed by calculating sensitivity of the rate of return for a number of events. Risks and uncertainties of project developments arise from various sources of errors including data, model and forecasting errors. It was found that the most influential factors affecting risk and uncertainty resulted from forecasting errors. Data errors and model errors have trivial effects. It was argued by many analysts that scenarios do not forecast what will happen but scenarios indicate only what can happen from given alternatives. It was suggested that the probability distributions of end-products of the project appraisal, such as cost-benefit ratios that take forecasting errors into account, are feasible decision tools for economic evaluation. Political, social, environmental as well as economic and other related risk issues have been addressed and included in decision-making frameworks, such as in a multi-criteria decisionmaking framework. But no suggestion has been made on how to incorporate risk into the investment decision-making process.