25 resultados para Panoramic radiograph
em Queensland University of Technology - ePrints Archive
Resumo:
We show that the parallax motion resulting from non-nodal rotation in panorama capture can be exploited for light field construction from commodity hardware. Automated panoramic image capture typically seeks to rotate a camera exactly about its nodal point, for which no parallax motion is observed. This can be difficult or impossible to achieve due to limitations of the mounting or optical systems, and consequently a wide range of captured panoramas suffer from parallax between images. We show that by capturing such imagery over a regular grid of camera poses, then appropriately transforming the captured imagery to a common parameterisation, a light field can be constructed. The resulting four-dimensional image encodes scene geometry as well as texture, allowing an increasingly rich range of light field processing techniques to be applied. Employing an Ocular Robotics REV25 camera pointing system, we demonstrate light field capture,refocusing and low-light image enhancement.
Resumo:
This study of the veranda as seen through the eyes of Lady Maria Nugent and Michael Scott, alias Tom Cringle, clearly demonstrates the important role that the piazza, as it was then more commonly known, played in the life of early nineteenth century Caribbean colonial society. The popularity of the veranda throughout the region, in places influenced by different European as well as African cultures, and among all classes of people, suggests that the appeal of this typical feature was based on something more than architectural fashion. A place of relative comfort in hot weather, the veranda is also a space at the interface of indoors and outdoors which allows for a wide variety of uses, for solitary or small or large group activities, many of which were noted by Nugent and Scott. Quintessentially, the veranda is a place in which to relax and take pleasure, not least of which is the enjoyment of the prospect, be it a panoramic view, a peaceful garden or a lively street scene. Despite the great changes in the nature of society, in the Caribbean and in many other parts of the world, the veranda and related structures such as the balcony continue to play at least as important a role in daily life as they did two centuries ago. The veranda of today’s Californian or Australian bungalow, and the balcony of the apartment block in the residential area of the modern city are among the contemporary equivalents of the lower and upper piazzas of Lady Nugent’s and Tom Cringle’s day.
Resumo:
To navigate successfully in a previously unexplored environment, a mobile robot must be able to estimate the spatial relationships of the objects of interest accurately. A Simultaneous Localization and Mapping (SLAM) sys- tem employs its sensors to build incrementally a map of its surroundings and to localize itself in the map simultaneously. The aim of this research project is to develop a SLAM system suitable for self propelled household lawnmowers. The proposed bearing-only SLAM system requires only an omnidirec- tional camera and some inexpensive landmarks. The main advantage of an omnidirectional camera is the panoramic view of all the landmarks in the scene. Placing landmarks in a lawn field to define the working domain is much easier and more flexible than installing the perimeter wire required by existing autonomous lawnmowers. The common approach of existing bearing-only SLAM methods relies on a motion model for predicting the robot’s pose and a sensor model for updating the pose. In the motion model, the error on the estimates of object positions is cumulated due mainly to the wheel slippage. Quantifying accu- rately the uncertainty of object positions is a fundamental requirement. In bearing-only SLAM, the Probability Density Function (PDF) of landmark position should be uniform along the observed bearing. Existing methods that approximate the PDF with a Gaussian estimation do not satisfy this uniformity requirement. This thesis introduces both geometric and proba- bilistic methods to address the above problems. The main novel contribu- tions of this thesis are: 1. A bearing-only SLAM method not requiring odometry. The proposed method relies solely on the sensor model (landmark bearings only) without relying on the motion model (odometry). The uncertainty of the estimated landmark positions depends on the vision error only, instead of the combination of both odometry and vision errors. 2. The transformation of the spatial uncertainty of objects. This thesis introduces a novel method for translating the spatial un- certainty of objects estimated from a moving frame attached to the robot into the global frame attached to the static landmarks in the environment. 3. The characterization of an improved PDF for representing landmark position in bearing-only SLAM. The proposed PDF is expressed in polar coordinates, and the marginal probability on range is constrained to be uniform. Compared to the PDF estimated from a mixture of Gaussians, the PDF developed here has far fewer parameters and can be easily adopted in a probabilistic framework, such as a particle filtering system. The main advantages of our proposed bearing-only SLAM system are its lower production cost and flexibility of use. The proposed system can be adopted in other domestic robots as well, such as vacuum cleaners or robotic toys when terrain is essentially 2D.
Resumo:
Over the last few years various research groups around the world have employed X-ray Computed Tomography (CT) imaging in the study of mummies – Toronto-Boston (1,2), Manchester(3). Prior to the development of CT scanners, plane X-rays were used in the investigation of mummies. Xeroradiography has also been employed(4). In a xeroradiograph, objects of similar X-ray density (very difficult to see on a conventional X-ray) appear edge-enhanced and so are seen much more clearly. CT scanners became available in the early 1970s. A CT scanner produces cross-sectional X-rays of objects. On a conventional X-radiograph individual structures are often very difficult to see because all the structures lying in the path of the X-ray beam are superimposed, a problem that does not occur with CT. Another advantage of CT is that the information in a series of consecutive images may be combined to produce a three-dimensional reconstruction of an object. Slices of different thickness and magnification may be chosen. Why CT a mummy? Prior to the availability of CT scanners, the only way of finding out about the inside of a mummy in any detail was to unwrap and dissect it. This has been done by various research groups – most notably the Manchester, UK and Pennsylvania University, USA mummy projects(5,6). Unwrapping a mummy and carrying out an autopsy is obviously very destructive. CT studies hold the possibility of producing a lot more information than is possible from plain X-rays and are able to show the undisturbed arrangement of the wrapped body. CT is also able to provide information about the internal structure of bones, organ packs, etc that wouldn’t be possible without sawing through the bones etc. The mummy we have scanned is encased in a coffin which would have to have been broken open in order to remove the body.
Resumo:
Scoliosis is a three-dimensional spinal deformity which requires surgical correction in progressive cases. In order to optimize correction and avoid complications following scoliosis surgery, patient-specific finite element models (FEM) are being developed and validated by our group. In this paper, the modeling methodology is described and two clinically relevant load cases are simulated for a single patient. Firstly, a pre-operative patient flexibility assessment, the fulcrum bending radiograph, is simulated to assess the model's ability to represent spine flexibility. Secondly, intra-operative forces during single rod anterior correction are simulated. Clinically, the patient had an initial Cobb angle of 44 degrees, which reduced to 26 degrees during fulcrum bending. Surgically, the coronal deformity corrected to 14 degrees. The simulated initial Cobb angle was 40 degrees, which reduced to 23 degrees following the fulcrum bending load case. The simulated surgical procedure corrected the coronal deformity to 14 degrees. The computed results for the patient-specific FEM are within the accepted clinical Cobb measuring error of 5 degrees, suggested that this modeling methodology is capable of capturing the biomechanical behaviour of a scoliotic human spine during anterior corrective surgery.
Resumo:
X-ray computed tomography (CT) is a medical imaging technique that produces images of trans-axial planes through the human body. When compared with a conventional radiograph, which is an image of many planes superimposed on each other, a CT image exhibits significantly improved contrast although this is at the expense of reduced spatial resolution.----- A CT image is reconstructed mathematically from a large number of one dimensional projections of the chosen plane. These projections are acquired electronically using a linear array of solid-state detectors and an x ray source that rotates around the patient.----- X-ray computed tomography is used routinely in radiological examinations. It has also be found to be useful in special applications such as radiotherapy treatment planning and three-dimensional imaging for surgical planning.
Resumo:
This paper presents a technique for tracking road edges in a panoramic image sequence. The major contribution is that instead of unwarping the image to find parallel lines representing the road edges, we choose to warp the parallel groundplane lines into the image plane of the equiangular panospheric camera. Updating the parameters of the line thus involves searching a very small number of pixels in the panoramic image, requiring considerably less computation than unwarping. Results using real-world images, including shadows, intersections and curves, are presented.
Resumo:
At the Mater Children’s Hospital, approximately 80% of patients presenting with Adolescent Idiopathic Scoliosis requiring corrective surgery receive a fulcrum bending radiograph. The fulcrum bending radiograph provides a measurement of spine flexibility and a better indication of achievable surgical correction than lateral-bending radiographs (Cheung and Luk, 1997; Hay et al 2008). The magnitude and distribution of the corrective force exerted by the bolster on the patient’s body is unknown. The objective of this pilot study was to measure, for the first time, the forces transmitted to the patient’s ribs through the bolster during the fulcrum bending radiograph.
Resumo:
We describe a scaling method for templating digital radiographs using conventional acetate templates independent of template magnification without the need for a calibration marker. The mean magnification factor for the radiology department was determined (119.8%, range117%-123.4%). This fixed magnification factor was used to scale the radiographs by the method described. 32 femoral heads on postoperative THR radiographs were then measured and compared to the actual size. The mean absolute accuracy was within 0.5% of actual head size (range 0 to 3%) with a mean absolute difference of 0.16mm (range 0-1mm, SD 0.26mm). Intraclass Correlation Coefficient (ICC) showed excellent reliability for both inter and intraobserver measurements with ICC scores of 0.993 (95% CI 0.988-0.996) for interobserver measurements and intraobserver measurements ranging between 0.990-0.993 (95% CI 0.980-0.997).
Resumo:
STUDY DESIGN: Controlled laboratory study. OBJECTIVES: To investigate the reliability and concurrent validity of photographic measurements of hallux valgus angle compared to radiographs as the criterion standard. BACKGROUND: Clinical assessment of hallux valgus involves measuring alignment between the first toe and metatarsal on weight-bearing radiographs or visually grading the severity of deformity with categorical scales. Digital photographs offer a noninvasive method of measuring deformity on an exact scale; however, the validity of this technique has not previously been established. METHODS: Thirty-eight subjects (30 female, 8 male) were examined (76 feet, 54 with hallux valgus). Computer software was used to measure hallux valgus angle from digital records of bilateral weight-bearing dorsoplantar foot radiographs and photographs. One examiner measured 76 feet on 2 occasions 2 weeks apart, and a second examiner measured 40 feet on a single occasion. Reliability was investigated by intraclass correlation coefficients and validity by 95% limits of agreement. The Pearson correlation coefficient was also calculated. RESULTS: Intrarater and interrater reliability were very high (intraclass correlation coefficients greater than 0.96) and 95% limits of agreement between photographic and radiographic measurements were acceptable. Measurements from photographs and radiographs were also highly correlated (Pearson r = 0.96). CONCLUSIONS: Digital photographic measurements of hallux valgus angle are reliable and have acceptable validity compared to weight-bearing radiographs. This method provides a convenient and precise tool in assessment of hallux valgus, while avoiding the cost and radiation exposure associated with radiographs.
Resumo:
Current complication rates for adolescent scoliosis surgery necessitate the development of better surgical planning tools to improve outcomes. Here we present our approach to developing finite element models of the thoracolumbar spine for deformity surgery simulation, with patient-specific model anatomy based on low-dose pre-operative computed tomography scans. In a first step towards defining patient-specific tissue properties, an initial 'benchmark' set of properties were used to simulate a clinically performed pre-operative spinal flexibility assessment, the fulcrum bending radiograph. Clinical data for ten patients were compared with the simulated results for this assessment and in cases where these data differed by more than 10%, soft tissue properties for the costo-vertebral joint (CVJt) were altered to achieve better agreement. Results from these analyses showed that changing the CVJt stiffness resulted in acceptable agreement between clinical and simulated flexibility in two of the six cases. In light of these results and those of our previous studies in this area, it is suggested that spinal flexibility in the fulcrum bending test is not governed by any single soft tissue structure acting in isolation. More detailed biomechanical characterisation of the fulcrum bending test is required to provide better data for determination of patient-specific soft tissue properties.
Resumo:
Many state of the art vision-based Simultaneous Localisation And Mapping (SLAM) and place recognition systems compute the salience of visual features in their environment. As computing salience can be problematic in radically changing environments new low resolution feature-less systems have been introduced, such as SeqSLAM, all of which consider the whole image. In this paper, we implement a supervised classifier system (UCS) to learn the salience of image regions for place recognition by feature-less systems. SeqSLAM only slightly benefits from the results of training, on the challenging real world Eynsham dataset, as it already appears to filter less useful regions of a panoramic image. However, when recognition is limited to specific image regions performance improves by more than an order of magnitude by utilising the learnt image region saliency. We then investigate whether the region salience generated from the Eynsham dataset generalizes to another car-based dataset using a perspective camera. The results suggest the general applicability of an image region salience mask for optimizing route-based navigation applications.
Resumo:
Objective To determine the burden of hospitalised, radiologically confirmed pneumonia (World Health Organization protocol) in Northern Territory Indigenous children. Design, setting and participants Historical, observational study of all hospital admissions for any diagnosis of NT resident Indigenous children, aged between >= 29 days and < 5 years, 1 April 1997 to 31 March 2005. Intervention All chest radiographs taken during these admissions, regardless of diagnosis, were assessed for pneumonia in accordance with the WHO protocol. Main outcome measure The primary outcome was endpoint consolidation (dense fluffy consolidation [alveolar infiltrate] of a portion of a lobe or the entire lung) present on a chest radiograph within 3 days of hospitalisation. Results We analysed data on 24 115 hospitalised episodes of care for 9492 children and 13 683 chest radiographs. The average annual cumulative incidence of endpoint consolidation was 26.6 per 1000 population per year (95% Cl, 25.3-27.9); 57.5 per 1000 per year in infants aged 1-11 months, 38.3 per 1000 per year in those aged 12-23 months, and 13.3 per 1000 per year in those aged 24-59 months. In all age groups, rates of endpoint consolidation in children in the arid southern region of NT were about twice that of children in the tropical northern region. Conclusion The rates of severe pneumonia in hospitalised NT Indigenous children are among the highest reported in the world. Reducing this unacceptable burden of disease should be a national health priority.
Resumo:
Background A reliable standardized diagnosis of pneumonia in children has long been difficult to achieve. Clinical and radiological criteria have been developed by the World Health Organization (WHO), however, their generalizability to different populations is uncertain. We evaluated WHO defined chest radiograph (CXRs) confirmed alveolar pneumonia in the clinical context in Central Australian Aboriginal children, a high risk population, hospitalized with acute lower respiratory illness (ALRI). Methods CXRs in children (aged 1-60 months) hospitalized and treated with intravenous antibiotics for ALRI and enrolled in a randomized controlled trial (RCT) of Vitamin A/Zinc supplementation were matched with data collected during a population-based study of WHO-defined primary endpoint pneumonia (WHO-EPC). These CXRs were reread by a pediatric pulmonologist (PP) and classified as pneumonia-PP when alveolar changes were present. Sensitivities, specificities, positive and negative predictive values (PPV, NPV) for clinical presentations were compared between WHO-EPC and pneumonia-PP. Results Of the 147 episodes of hospitalized ALRI, WHO-EPC was significantly less commonly diagnosed in 40 (27.2%) compared to pneumonia-PP (difference 20.4%, 95% CI 9.6-31.2, P < 0.001). Clinical signs on admission were poor predictors for both pneumonia-PP and WHO-EPC; the sensitivities of clinical signs ranged from a high of 45% for tachypnea to 5% for fever + tachypnea + chest-indrawing. The PPV range was 40-20%, respectively. Higher PPVs were observed against the pediatric pulmonologist's diagnosis compared to WHO-EPC. Conclusions WHO-EPC underestimates alveolar consolidation in a clinical context. Its use in clinical practice or in research designed to inform clinical management in this population should be avoided. Pediatr Pulmonol. 2012; 47:386-392. (C) 2011 Wiley Periodicals, Inc.