310 resultados para PRIMARY HYPERPARATHYROIDISM
em Queensland University of Technology - ePrints Archive
Resumo:
BACKGROUND: Familial isolated hyperparathyroidism (FIHP) is an autosomal dominantly inherited form of primary hyperparathyroidism. Although comprising only about 1% of cases of primary hyperparathyroidism, identification and functional analysis of a causative gene for FIHP is likely to advance our understanding of parathyroid physiology and pathophysiology. METHODS: A genome-wide screen of DNA from seven pedigrees with FIHP was undertaken in order to identify a region of genetic linkage with the disorder. RESULTS: Multipoint linkage analysis identified a region of suggestive linkage (LOD score 2.68) on chromosome 2. Fine mapping with the addition of three other families revealed significant linkage adjacent to D2S2368 (maximum multipoint LOD score 3.43). Recombination events defined a 1.7 Mb region of linkage between D2S2368 and D2S358 in nine pedigrees. Sequencing of the two most likely candidate genes in this region, however, did not identify a gene for FIHP. CONCLUSIONS: We conclude that a causative gene for FIHP lies within this interval on chromosome 2. This is a major step towards eventual precise identification of a gene for FIHP, likely to be a key component in the genetic regulation of calcium homeostasis.
Resumo:
A mathematical model for the galvanostatic discharge and recovery of porous, electrolytic manganese dioxide cathodes, similar to those found within primary alkaline batteries is presented. The phenomena associated with discharge are modeled over three distinct size scales, a cathodic (or macroscopic) scale, a porous manganese oxide particle (or microscopic) scale, and a manganese oxide crystal (or submicroscopic) scale. The physical and chemical coupling between these size scales is included in the model. In addition, the model explicitly accounts for the graphite phase within the cathode. The effects that manganese oxide particle size and proton diffusion have on cathodic discharge and the effects of intraparticle voids and microporous electrode structure are predicted using the model.
Resumo:
There exists a general consensus in the science education literature around the goal of enhancing students. and teachers. views of nature of science (NOS). An emerging area of research in science education explores NOS and argumentation, and the aim of this study was to explore the effectiveness of a science content course incorporating explicit NOS and argumentation instruction on preservice primary teachers. views of NOS. A constructivist perspective guided the study, and the research strategy employed was case study research. Five preservice primary teachers were selected for intensive investigation in the study, which incorporated explicit NOS and argumentation instruction, and utilised scientific and socioscientific contexts for argumentation to provide opportunities for participants to apply their NOS understandings to their arguments. Four primary sources of data were used to provide evidence for the interpretations, recommendations, and implications that emerged from the study. These data sources included questionnaires and surveys, interviews, audio- and video-taped class sessions, and written artefacts. Data analysis involved the formation of various assertions that informed the major findings of the study, and a variety of validity and ethical protocols were considered during the analysis to ensure the findings and interpretations emerging from the data were valid. Results indicated that the science content course was effective in enabling four of the five participants. views of NOS to be changed. All of the participants expressed predominantly limited views of the majority of the examined NOS aspects at the commencement of the study. Many positive changes were evident at the end of the study with four of the five participants expressing partially informed and/or informed views of the majority of the examined NOS aspects. A critical analysis of the effectiveness of the various course components designed to facilitate the development of participants‟ views of NOS in the study, led to the identification of three factors that mediated the development of participants‟ NOS views: (a) contextual factors (including context of argumentation, and mode of argumentation), (b) task-specific factors (including argumentation scaffolds, epistemological probes, and consideration of alternative data and explanations), and (c) personal factors (including perceived previous knowledge about NOS, appreciation of the importance and utility value of NOS, and durability and persistence of pre-existing beliefs). A consideration of the above factors informs recommendations for future studies that seek to incorporate explicit NOS and argumentation instruction as a context for learning about NOS.
Resumo:
Information graphics have become increasingly important in representing, organising and analysing information in a technological age. In classroom contexts, information graphics are typically associated with graphs, maps and number lines. However, all students need to become competent with the broad range of graphics that they will encounter in mathematical situations. This paper provides a rationale for creating a test to measure students’ knowledge of graphics. This instrument can be used in mass testing and individual (in-depth) situations. Our analysis of the utility of this instrument informs policy and practice. The results provide an appreciation of the relative difficulty of different information graphics; and provide the capacity to benchmark information about students’ knowledge of graphics. The implications for practice include the need to support the development of students’ knowledge of graphics, the existence of gender differences, the role of cross-curriculum applications in learning about graphics, and the need to explicate the links among graphics.
Resumo:
This paper reports on the performance of 58 11 to 12-year-olds on a spatial visualization task and a spatial orientation task. The students completed these tasks and explained their thinking during individual interviews. The qualitative data were analysed to inform pedagogical content knowledge for spatial activities. The study revealed that “matching” or “matching and eliminating” were the typical strategies that students employed on these spatial tasks. However, errors in making associations between parts of the same or different shapes were noted. Students also experienced general difficulties with visual memory and language use to explain their thinking. The students’ specific difficulties in spatial visualization related to obscured items, the perspective used, and the placement and orientation of shapes.
Resumo:
This study investigated the longitudinal performance of 378 students who completed mathematics items rich in graphics. Specifically, this study explored student performance across axis (e.g., numbers lines), opposed-position (e.g., line and column graphs) and circular (e.g., pie charts) items over a three-year period (ages 9-11 years). The results of the study revealed significant performance differences in the favour of boys on graphics items that were represented in horizontal and vertical displays. There were no gender differences on items that were represented in a circular manner.