67 resultados para PRICE INDEXES
em Queensland University of Technology - ePrints Archive
Consumers' price knowledge and price information search for non-durable products in grocery shopping
Resumo:
A number of studies have focused on estimating the effects of accessibility on housing values by using the hedonic price model. In the majority of studies, estimation results have revealed that housing values increase as accessibility improves, although the magnitude of estimates has varied across studies. Adequately estimating the relationship between transportation accessibility and housing values is challenging for at least two reasons. First, the monocentric city assumption applied in location theory is no longer valid for many large or growing cities. Second, rather than being randomly distributed in space, housing values are clustered in space—often exhibiting spatial dependence. Recognizing these challenges, a study was undertaken to develop a spatial lag hedonic price model in the Seoul, South Korea, metropolitan region, which includes a measure of local accessibility as well as systemwide accessibility, in addition to other model covariates. Although the accessibility measures can be improved, the modeling results suggest that the spatial interactions of apartment sales prices occur across and within traffic analysis zones, and the sales prices for apartment communities are devalued as accessibility deteriorates. Consistent with findings in other cities, this study revealed that the distance to the central business district is still a significant determinant of sales price.
Resumo:
In an open railway access market price negotiation, it is feasible to achieve higher cost recovery by applying the principles of price discrimination. The price negotiation can be modeled as an optimization problem of revenue intake. In this paper, we present the pricing negotiation based on reinforcement learning model. A negotiated-price setting technique based on agent learning is introduced, and the feasible applications of the proposed method for open railway access market simulation are discussed.
Resumo:
Estimates of the half-life to convergence of prices across a panel of cities are subject to bias from three potential sources: inappropriate cross-sectional aggregation of heterogeneous coefficients, presence of lagged dependent variables in a model with individual fixed effects, and time aggregation of commodity prices. This paper finds no evidence of heterogeneity bias in annual CPI data for 17 U.S. cities from 1918 to 2006, but correcting for the “Nickell bias” and time aggregation bias produces a half-life of 7.5 years, shorter than estimates from previous studies.
Resumo:
Client owners usually need an estimate or forecast of their likely building costs in advance of detailed design in order to confirm the financial feasibility of their projects. Because of their timing in the project life cycle, these early stage forecasts are characterized by the minimal amount of information available concerning the new (target) project to the point that often only its size and type are known. One approach is to use the mean contract sum of a sample, or base group, of previous projects of a similar type and size to the project for which the estimate is needed. Bernoulli’s law of large numbers implies that this base group should be as large as possible. However, increasing the size of the base group inevitably involves including projects that are less and less similar to the target project. Deciding on the optimal number of base group projects is known as the homogeneity or pooling problem. A method of solving the homogeneity problem is described involving the use of closed form equations to compare three different sampling arrangements of previous projects for their simulated forecasting ability by a cross-validation method, where a series of targets are extracted, with replacement, from the groups and compared with the mean value of the projects in the base groups. The procedure is then demonstrated with 450 Hong Kong projects (with different project types: Residential, Commercial centre, Car parking, Social community centre, School, Office, Hotel, Industrial, University and Hospital) clustered into base groups according to their type and size.