657 resultados para Operational management
em Queensland University of Technology - ePrints Archive
Resumo:
This article reports the findings into patterns of governance on nonprofit boards in Australia. The research surveys 118 boards, upon which serve a total of 1405 directors. The findings indicate that nonprofit boards can mimic some aspects of a shareholder approach to governance. But nonprofit boards, in the main, indicate priorities and activities of a stakeholder approach to governance. The features of `isomorphism' that arise largely stem from legislative requirements in corporate governance. Generally, nonprofit directors are influenced by agenda and motivations that can be differentiated from the influences upon director activity in the corporate sector. The study indicates that nonprofit boards prize knowledge and loyalty to the sector when considering board composition. The survey suggests nonprofits ``compensate'' for the demands placed upon them about fiduciary duty and due diligence responsibilities with the diverse intellectual expertise of non-executive directors. Nonprofit boards possess greater diversity than boards in the corporate sector; they include more women as directors than corporate boards and they include a greater proportion of directors from minority groups. While strategic issues feature significantly as a task of the nonprofit board, they distinguish themselves from their corporate counterparts by engaging in operational management. The findings indicate that, in the main, directors on nonprofit boards deliberate and operate in ways distinctive from their corporate counterparts. Such findings offer a contribution to the reform of Corporations Law in other countries and the likely consequence on boards outside the corporate sector.
Resumo:
Despite the increasing significance of the construction industry as an emerging sector of the Australian economy, there is inadequate research performed on construction design firms in terms of theoretical and empirical foundations. Although past research has identified the barriers and success factors for firm market entry, evidence suggests that to date no research has explicitly explored the sustainability of construction design firms in international markets. SMEs and their approach to firm internationalisation differ significantly from large manufacturing firms and a vast majority of construction design firms operate as SMEs. This paper develops a sustainable business model for construction design SMEs, which rely upon the development of clear Client Following (CF) versus Market Seeking (MS) strategies to support internal firm strategic and operational management. The understanding of these strategies is vital as the application of either will shape the design management approach of firms, which would in turn impact on the sustainability of these firms in foreign markets. Long-term sustainability of firms in international markets relies heavily upon client satisfaction. Client and project team participants’ communication during various design processes has often been problematic and the added difficulty of communicating across international boundaries further compounds the problem of capturing and maintaining client’s requirements. Therefore this paper develops a model for economic sustainability of Australian construction design firms working in international markets by exploring factors that affect client satisfaction across international boundaries, through the development of business performance indicators. These include not only the critical financial capital but also other ‘softer’ indicators, namely: social, cultural and intellectual capital. These act as a firm’s measure of success and the acquisition of this type of capital will provide significant advantages to firms’ success, hence sustainability in international markets.
Resumo:
Deterministic transit capacity analysis applies to planning, design and operational management of urban transit systems. The Transit Capacity and Quality of Service Manual (1) and Vuchic (2, 3) enable transit performance to be quantified and assessed using transit capacity and productive capacity. This paper further defines important productive performance measures of an individual transit service and transit line. Transit work (p-km) captures the transit task performed over distance. Passenger transmission (p-km/h) captures the passenger task delivered by service at speed. Transit productiveness (p-km/h) captures transit work performed over time. These measures are useful to operators in understanding their services’ or systems’ capabilities and passenger quality of service. This paper accounts for variability in utilized demand by passengers along a line and high passenger load conditions where passenger pass-up delay occurs. A hypothetical case study of an individual bus service’s operation demonstrates the usefulness of passenger transmission in comparing existing and growth scenarios. A hypothetical case study of a bus line’s operation during a peak hour window demonstrates the theory’s usefulness in examining the contribution of individual services to line productive performance. Scenarios may be assessed using this theory to benchmark or compare lines and segments, conditions, or consider improvements.
Resumo:
Deterministic transit capacity analysis applies to planning, design and operational management of urban transit systems. The Transit Capacity and Quality of Service Manual (1) and Vuchic (2, 3) enable transit performance to be quantified and assessed using transit capacity and productive capacity. This paper further defines important productive performance measures of an individual transit service and transit line. Transit work (p-km) captures the transit task performed over distance. Passenger transmission (p-km/h) captures the passenger task delivered by service at speed. Transit productiveness (p-km/h) captures transit work performed over time. These measures are useful to operators in understanding their services’ or systems’ capabilities and passenger quality of service. This paper accounts for variability in utilized demand by passengers along a line and high passenger load conditions where passenger pass-up delay occurs. A hypothetical case study of an individual bus service’s operation demonstrates the usefulness of passenger transmission in comparing existing and growth scenarios. A hypothetical case study of a bus line’s operation during a peak hour window demonstrates the theory’s usefulness in examining the contribution of individual services to line productive performance. Scenarios may be assessed using this theory to benchmark or compare lines and segments, conditions, or consider improvements.
Resumo:
Performance of urban transit systems may be quantified and assessed using transit capacity and productive capacity in planning, design and operational management activities. Bunker (4) defines important productive performance measures of an individual transit service and transit line, which are extended in this paper to quantify efficiency and operating fashion of transit services and lines. Comparison of a hypothetical bus line’s operation during a morning peak hour and daytime hour demonstrates the usefulness of productiveness efficiency and passenger transmission efficiency, passenger churn and average proportion line length traveled to the operator in understanding their services’ and lines’ productive performance, operating characteristics, and quality of service. Productiveness efficiency can flag potential pass-up activity under high load conditions, as well as ineffective resource deployment. Proportion line length traveled can directly measure operating fashion. These measures can be used to compare between lines/routes and, within a given line, various operating scenarios and time horizons to target improvements. The next research stage is investigating within-line variation using smart card passenger data and field observation of pass-ups. Insights will be used to further develop practical guidance to operators.
Resumo:
Performance of urban transit systems may be quantified and assessed using transit capacity and productive capacity in planning, design and operational management activities. Bunker (4) defines important productive performance measures of an individual transit service and transit line, which are extended in this paper to quantify efficiency and operating fashion of transit services and lines. Comparison of a hypothetical bus line’s operation during a morning peak hour and daytime hour demonstrates the usefulness of productiveness efficiency and passenger transmission efficiency, passenger churn and average proportion line length traveled to the operator in understanding their services’ and lines’ productive performance, operating characteristics, and quality of service. Productiveness efficiency can flag potential pass-up activity under high load conditions, as well as ineffective resource deployment. Proportion line length traveled can directly measure operating fashion. These measures can be used to compare between lines/routes and, within a given line, various operating scenarios and time horizons to target improvements. The next research stage is investigating within-line variation using smart card passenger data and field observation of pass-ups. Insights will be used to further develop practical guidance to operators.
Resumo:
Urban transit system performance may be quantified and assessed using transit capacity and productive capacity for planning, design and operational management. Bunker (4) defines important productive performance measures of an individual transit service and transit line. Transit work (p-km) captures transit task performed over distance. Transit productiveness (p-km/h) captures transit work performed over time. This paper applies productive performance with risk assessment to quantify transit system reliability. Theory is developed to monetize transit segment reliability risk on the basis of demonstration Annual Reliability Event rates by transit facility type, segment productiveness, and unit-event severity. A comparative example of peak hour performance of a transit sub-system containing bus-on-street, busway, and rail components in Brisbane, Australia demonstrates through practical application the importance of valuing reliability. Comparison reveals the highest risk segments to be long, highly productive on street bus segments followed by busway (BRT) segments and then rail segments. A transit reliability risk reduction treatment example demonstrates that benefits can be significant and should be incorporated into project evaluation in addition to those of regular travel time savings, reduced emissions and safety improvements. Reliability can be used to identify high risk components of the transit system and draw comparisons between modes both in planning and operations settings, and value improvement scenarios in a project evaluation setting. The methodology can also be applied to inform daily transit system operational management.
Resumo:
Urban transit system performance may be quantified and assessed using transit capacity and productive capacity for planning, design and operational management. Bunker (4) defines important productive performance measures of an individual transit service and transit line. Transit work (p-km) captures transit task performed over distance. Transit productiveness (p-km/h) captures transit work performed over time. This paper applies productive performance with risk assessment to quantify transit system reliability. Theory is developed to monetize transit segment reliability risk on the basis of demonstration Annual Reliability Event rates by transit facility type, segment productiveness, and unit-event severity. A comparative example of peak hour performance of a transit sub-system containing bus-on-street, busway, and rail components in Brisbane, Australia demonstrates through practical application the importance of valuing reliability. Comparison reveals the highest risk segments to be long, highly productive on street bus segments followed by busway (BRT) segments and then rail segments. A transit reliability risk reduction treatment example demonstrates that benefits can be significant and should be incorporated into project evaluation in addition to those of regular travel time savings, reduced emissions and safety improvements. Reliability can be used to identify high risk components of the transit system and draw comparisons between modes both in planning and operations settings, and value improvement scenarios in a project evaluation setting. The methodology can also be applied to inform daily transit system operational management.
Resumo:
Performance of urban transit systems may be quantified and assessed using transit capacity and productive capacity in planning, design and operational management activities. Bunker (4) defines important productive performance measures of an individual transit service and transit line, which are extended in this paper to quantify efficiency and operating fashion of transit services and lines. Comparison of a hypothetical bus line’s operation during a morning peak hour and daytime hour demonstrates the usefulness of productiveness efficiency and passenger transmission efficiency, passenger churn and average proportion line length traveled to the operator in understanding their services’ and lines’ productive performance, operating characteristics, and quality of service. Productiveness efficiency can flag potential pass-up activity under high load conditions, as well as ineffective resource deployment. Proportion line length traveled can directly measure operating fashion. These measures can be used to compare between lines/routes and, within a given line, various operating scenarios and time horizons to target improvements. The next research stage is investigating within-line variation using smart card passenger data and field observation of pass-ups. Insights will be used to further develop practical guidance to operators.
Resumo:
Knowledge base is one of the emerging concepts in the Knowledge Management area. As there exists no agreed- upon standard definition of a knowledge base, this paper defines a knowledge base in terms of our research of Enterprise Systems (ES). The knowledge base is defined with reference to Learning Network Theory. Using this theoretical framework, we investigate the roles of management and operational staff in organisations and how their interactions can create a better ES-knowledge base to contribute to ES success. We focus on the post- implementation phase of ES as part of the ES lifecycle. Our findings will facilitate future research directions and contribute to better understandings of how the knowledge base can be integrated and how this integration leads to Enterprise System success.
Resumo:
Aspect orientation is an important approach to address complexity of cross-cutting concerns in Information Systems. This approach encapsulates these concerns separately and compose them to the main module when needed. Although there a different works which shows how this separation should be performed in process models, the composition of them is an open area. In this paper, we demonstrate the semantics of a service which enables this composition. The result can also be used as a blueprint to implement the service to support aspect orientation in Business Process Management area.
Resumo:
Business process management systems (BPMS) belong to a class of enterprise information systems that are characterized by the dependence on explicitly modeled process logic. Through the process logic, it is relatively easy to manage explicitly the routing and allocation of work items along a business process through the system. Inspired by the DeLone and McLean framework, we theorize that these process-aware system features are important attributes of system quality, which in turn will elevate key user evaluations such as perceived usefulness, and usage satisfaction. We examine this theoretical model using data collected from four different, mostly mature BPM system projects. Our findings validate the importance of input quality as well as allocation and routing attributes as antecedents of system quality, which, in turn, determines both usefulness and satisfaction with the system. We further demonstrate how service quality and workflow dependency are significant precursors to perceived usefulness. Our results suggest the appropriateness of a multi-dimensional conception of system quality for future research, and provide important design-oriented advice for the design and configuration of BPMSs.
Resumo:
This paper reports on a study of ERP lifecycle major issues from the perspectives of individuals with substantial and diverse involvement with SAP Financials in Queensland Government. A survey was conducted of 117 ERP system project participants in five closely related state government agencies. A modified Delphi technique identified, rationalized and weighed perceived major issues in ongoing ERP life cycle implementation, management and support. The five agencies each implemented SAP Financials simultaneously using a common implementation partner. The three survey rounds of the Delphi technique, together with coding and synthesizing procedures, resulted in a set of 10 major issue categories with 38 sub-issues. Relative scores of issue importance are compared across government agencies, roles (client vs implementation partner) and organizational levels (strategic, technical and operational). Study findings confirm the importance of this finer partitioning of the data, and distinctions identified reflect the circumstances of ERP lifecycle implementation, management and support among the stakeholder groups. The study findings should also be of interest to stakeholders who seek to better understand the issues surrounding ERP systems and to better realise the benefits of ERP.
Resumo:
The concept of a substantive integrator is introduced as a method for integrated resource and environmental management as a means to assimilate different resource values at the operational or field level. A substantive integrator is a strategic management tool for integrating multiple uses into coprorate management regimes that traditionally manage for single values. Wildlife habitat management is presented as a substantive integrator for managing vegetation on electric utility power line corridors. A case study from northern British Columbia provides an example of wildlife habitat management as a means to integrate other resource values such as aesthetics, access and subsistence along British Columbia Hydro and Power Authority's transmission rights-of-way.