81 resultados para Oils and fats, Edible Deterioration Testing

em Queensland University of Technology - ePrints Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In South and Southeast Asia, postharvest loss causes material waste of up to 66% in fruits and vegetables, 30% in oilseeds and pulses, and 49% in roots and tubers. The efficiency of postharvest equipment directly affects industrial-scale food production. To enhance current processing methods and devices, it is essential to analyze the responses of food materials under loading operations. Food materials undergo different types of mechanical loading during postharvest and processing stages. Therefore, it is important to determine the properties of these materials under different types of loads, such as tensile, compression, and indentation. This study presents a comprehensive analysis of the available literature on the tensile properties of different food samples. The aim of this review was to categorize the available methods of tensile testing for agricultural crops and food materials to investigate an appropriate sample size and tensile test method. The results were then applied to perform tensile tests on pumpkin flesh and peel samples, in particular on arc-sided samples at a constant loading rate of 20 mm min-1. The results showed the maximum tensile stress of pumpkin flesh and peel samples to be 0.535 and 1.45 MPa, respectively. The elastic modulus of the flesh and peel samples was 6.82 and 25.2 MPa, respectively, while the failure modulus values were 14.51 and 30.88 MPa, respectively. The results of the tensile tests were also used to develop a finite element model of mechanical peeling of tough-skinned vegetables. However, to study the effects of deformation rate, moisture content, and texture of the tissue on the tensile responses of food materials, more investigation needs to be done in the future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polybrominated diphenyl ethers (PBDEs) are a class of brominated flame retardants (BFRs) once extensively used in the plastics of a wide range of consumer products. The listing of certain congeners that are constituents of commercial PBDE mixtures (including c-octaBDE) in the Stockholm Convention and tightening regulation of many other BFRs in recent years have created the need for a rapid and effective method of identifying BFR-containing plastics. A three-tiered testing strategy comparing results from non-destructive testing (X-ray fluorescence (XRF)) (n = 1714), a surface wipe test (n = 137) and destructive chemical analysis (n = 48) was undertaken to systematically identify BFRs in a wide range of consumer products. XRF rapidly identified bromine in 92% of products later confirmed to contain BFRs. Surface wipes of products identified tetrabromobisphenol A (TBBPA), c-octaBDE congeners and BDE-209 with relatively high accuracy (> 75%) when confirmed by destructive chemical analysis. A relationship between the amounts of BFRs detected in surface wipes and subsequent destructive testing shows promise in predicting not only the types of BFRs present but also estimating the concentrations present. Information about the types of products that may contain persistent BFRs will assist regulators in implementing policies to further reduce the occurrence of these chemicals in consumer products.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective To develop a child victimization survey among a diverse group of child protection experts and examine the performance of the instrument through a set of international pilot studies. Methods The initial draft of the instrument was developed after input from scientists and practitioners representing 40 countries. Volunteers from the larger group of scientists participating in the Delphi review of the ICAST P and R reviewed the ICAST C by email in 2 rounds resulting in a final instrument. The ICAST C was then translated and back translated into six languages and field tested in four countries using a convenience sample of 571 children 12–17 years of age selected from schools and classrooms to which the investigators had easy access. Results The final ICAST C Home has 38 items and the ICAST C Institution has 44 items. These items serve as screeners and positive endorsements are followed by queries for frequency and perpetrator. Half of respondents were boys (49%). Endorsement for various forms of victimization ranged from 0 to 51%. Many children report violence exposure (51%), physical victimization (55%), psychological victimization (66%), sexual victimization (18%), and neglect in their homes (37%) in the last year. High rates of physical victimization (57%), psychological victimization (59%), and sexual victimization (22%) were also reported in schools in the last year. Internal consistency was moderate to high (alpha between .685 and .855) and missing data low (less than 1.5% for all but one item). Conclusions In pilot testing, the ICAST C identifies high rates of child victimization in all domains. Rates of missing data are low, and internal consistency is moderate to high. Pilot testing demonstrated the feasibility of using child self-report as one strategy to assess child victimization. Practice implications The ICAST C is a multi-national, multi-lingual, consensus-based survey instrument. It is available in six languages for international research to estimate child victimization. Assessing the prevalence of child victimization is critical in understanding the scope of the problem, setting national and local priorities, and garnering support for program and policy development aimed at child protection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Osteoporosis is a disease characterized by low bone mass and micro-architectural deterioration of bone tissue, with a consequent increase in bone fragility and susceptibility to fracture. Osteoporosis affects over 200 million people worldwide, with an estimated 1.5 million fractures annually in the United States alone, and with attendant costs exceeding $10 billion dollars per annum. Osteoporosis reduces bone density through a series of structural changes to the honeycomb-like trabecular bone structure (micro-structure). The reduced bone density, coupled with the microstructural changes, results in significant loss of bone strength and increased fracture risk. Vertebral compression fractures are the most common type of osteoporotic fracture and are associated with pain, increased thoracic curvature, reduced mobility, and difficulty with self care. Surgical interventions, such as kyphoplasty or vertebroplasty, are used to treat osteoporotic vertebral fractures by restoring vertebral stability and alleviating pain. These minimally invasive procedures involve injecting bone cement into the fractured vertebrae. The techniques are still relatively new and while initial results are promising, with the procedures relieving pain in 70-95% of cases, medium-term investigations are now indicating an increased risk of adjacent level fracture following the procedure. With the aging population, understanding and treatment of osteoporosis is an increasingly important public health issue in developed Western countries. The aim of this study was to investigate the biomechanics of spinal osteoporosis and osteoporotic vertebral compression fractures by developing multi-scale computational, Finite Element (FE) models of both healthy and osteoporotic vertebral bodies. The multi-scale approach included the overall vertebral body anatomy, as well as a detailed representation of the internal trabecular microstructure. This novel, multi-scale approach overcame limitations of previous investigations by allowing simultaneous investigation of the mechanics of the trabecular micro-structure as well as overall vertebral body mechanics. The models were used to simulate the progression of osteoporosis, the effect of different loading conditions on vertebral strength and stiffness, and the effects of vertebroplasty on vertebral and trabecular mechanics. The model development process began with the development of an individual trabecular strut model using 3D beam elements, which was used as the building block for lattice-type, structural trabecular bone models, which were in turn incorporated into the vertebral body models. At each stage of model development, model predictions were compared to analytical solutions and in-vitro data from existing literature. The incremental process provided confidence in the predictions of each model before incorporation into the overall vertebral body model. The trabecular bone model, vertebral body model and vertebroplasty models were validated against in-vitro data from a series of compression tests performed using human cadaveric vertebral bodies. Firstly, trabecular bone samples were acquired and morphological parameters for each sample were measured using high resolution micro-computed tomography (CT). Apparent mechanical properties for each sample were then determined using uni-axial compression tests. Bone tissue properties were inversely determined using voxel-based FE models based on the micro-CT data. Specimen specific trabecular bone models were developed and the predicted apparent stiffness and strength were compared to the experimentally measured apparent stiffness and strength of the corresponding specimen. Following the trabecular specimen tests, a series of 12 whole cadaveric vertebrae were then divided into treated and non-treated groups and vertebroplasty performed on the specimens of the treated group. The vertebrae in both groups underwent clinical-CT scanning and destructive uniaxial compression testing. Specimen specific FE vertebral body models were developed and the predicted mechanical response compared to the experimentally measured responses. The validation process demonstrated that the multi-scale FE models comprising a lattice network of beam elements were able to accurately capture the failure mechanics of trabecular bone; and a trabecular core represented with beam elements enclosed in a layer of shell elements to represent the cortical shell was able to adequately represent the failure mechanics of intact vertebral bodies with varying degrees of osteoporosis. Following model development and validation, the models were used to investigate the effects of progressive osteoporosis on vertebral body mechanics and trabecular bone mechanics. These simulations showed that overall failure of the osteoporotic vertebral body is initiated by failure of the trabecular core, and the failure mechanism of the trabeculae varies with the progression of osteoporosis; from tissue yield in healthy trabecular bone, to failure due to instability (buckling) in osteoporotic bone with its thinner trabecular struts. The mechanical response of the vertebral body under load is highly dependent on the ability of the endplates to deform to transmit the load to the underlying trabecular bone. The ability of the endplate to evenly transfer the load through the core diminishes with osteoporosis. Investigation into the effect of different loading conditions on the vertebral body found that, because the trabecular bone structural changes which occur in osteoporosis result in a structure that is highly aligned with the loading direction, the vertebral body is consequently less able to withstand non-uniform loading states such as occurs in forward flexion. Changes in vertebral body loading due to disc degeneration were simulated, but proved to have little effect on osteoporotic vertebra mechanics. Conversely, differences in vertebral body loading between simulated invivo (uniform endplate pressure) and in-vitro conditions (where the vertebral endplates are rigidly cemented) had a dramatic effect on the predicted vertebral mechanics. This investigation suggested that in-vitro loading using bone cement potting of both endplates has major limitations in its ability to represent vertebral body mechanics in-vivo. And lastly, FE investigation into the biomechanical effect of vertebroplasty was performed. The results of this investigation demonstrated that the effect of vertebroplasty on overall vertebra mechanics is strongly governed by the cement distribution achieved within the trabecular core. In agreement with a recent study, the models predicted that vertebroplasty cement distributions which do not form one continuous mass which contacts both endplates have little effect on vertebral body stiffness or strength. In summary, this work presents the development of a novel, multi-scale Finite Element model of the osteoporotic vertebral body, which provides a powerful new tool for investigating the mechanics of osteoporotic vertebral compression fractures at the trabecular bone micro-structural level, and at the vertebral body level.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The motivation for secondary school principals in Queensland, Australia, to investigate curriculum change coincided with the commencement in 2005 of the state government’s publication of school exit test results as a measure of accountability. Aligning the schools’ curriculum with the requirements of high-stakes testing is considered by many academics and teachers as negative outcome of accountability for reasons such as ‘teaching to the test’ and narrowing the curriculum. However, this article outlines empirical evidence that principals are instigating curriculum change to improve published high-stakes test results. Three principals in this study offered several reasons as to why they wished to implement changes to school curricula. One reason articulated by all three was the pressures of accountability, particularly through the publication of high-stakes test data which has now become commonplace in education systems of many Western Nations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This is the protocol for a review and there is no abstract. The objectives are as follows: Our objective is to determine if there is sufficient evidence to recommend the use of pH testing (the intervention under scrutiny) for verification of correct placement of nasogastric tubes in adults and children. To this end, we will attempt to answer the following questions: 1. In adults and children, is pH testing an effective and safe method for determining whether nasogastric tubes are correctly positioned in the stomach before feeding (or delivery of any fluid) begins? 2. What evidence is there about the risk of adverse events in the case of incorrect placement? For this review, pH testing is defined as: litmus paper, pH indicator test strips, pH meters. These will be tested against other methods used for detecting placement of nasogastric tubes, including visual examination of aspirate, auscultation with insufflation of air, detection of air bubbles in a bowl of water, X-ray, ultrasonography, endoscopy, enzyme analysis of aspirate, capnography, and other methods that do not rely on measurement of pH.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background/Aim There is a 70% higher age-adjusted incidence of heart failure (HF) amongst Aboriginal and Torres Strait Islander people, three times more hospitalisations and twice as many deaths than non-Aboriginal people. There is a need to develop holistic yet individualised approaches in accord with the values of Aboriginal community healthcare to support patient education and self-care. The aim of this study was to re-design an existing HF educational resource (Fluid Watchers-Pacific Rim©) to be culturally safe for Aboriginal and Torres Strait Islander peoples, working in collaboration with the local community, and to conduct feasibility testing. Methods This study was conducted in two phases and utilised a mixed methods approach (qualitative and quantitative). Phase 1 of this study used action research methods to develop a culturally safe electronic resource to be provided to Aboriginal HF patients via a tablet computer. A HF expert panel adapted the existing resource to ensure it was evidence-based and contained appropriate language and images that reflects Aboriginal culture. A stakeholder group (which included Aboriginal workers and HF patients, as well as researchers and clinicians) then reviewed the resources and changes were made accordingly. In Phase 2, the new resource was tested on a sample of Aboriginal HF patients to assess feasibility and acceptability. Patient knowledge, satisfaction and self-care behaviours were measured using a before and after design with validated questionnaires. As this was a pilot test to determine feasibility, no statistical comparisons were made. Results - Phase 1: Throughout the process of resource development, two main themes emerged from the stakeholder consultation. These were the importance of identity, meaning that it was important to ensure that the resource accurately reflected the local community, with the appropriate clothing, skin tone and voice. The resource was adapted to reflect this and of the local community voiced the recordings for the resource. The other theme was comprehension; images were important and all text was converted to the first person and used plain language. - Phase 2: Five Aboriginal participants, mean age 61.6 ± 10.0 years, with NYHA Class III and IV heart failure were enrolled. Participants reported a high level of satisfaction with the resource (83.0%). HF knowledge (percentage of correct responses) increased from 48.0 ± 6.7% to 58.0 ± 9.7%, a 20.8% increase and results of the self-care index indicated that the biggest change was in patient confidence for self-care with a 95% increase in confidence score (46.7 ± 16.0 to 91.1 ± 11.5). Changes in management and maintenance scores varied between9275 patients. Conclusion By working in collaboration with HF experts, Aboriginal researchers and patients, a culturally safe HF resource has been developed for Aboriginal and Torres Strait Islander patients. Engaging Aboriginal researchers, capacity-building, and being responsive to local systems and structures enabled this pilot study to be successfully completed with the Aboriginal community and positive participant feedback demonstrated that the methodology used in this study was appropriate and acceptable; participants were able to engage with willingness and confidence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hydrocarbon spills on roads are a major safety concern for the driving public and can have severe cost impacts both on pavement maintenance and to the economy through disruption to services. The time taken to clean-up spills and re-open roads in a safe driving condition is an issue of increasing concern given traffic levels on major urban arterials. Thus, the primary aim of the research was to develop a sorbent material that facilitates rapid clean-up of road spills. The methodology involved extensive research into a range of materials (organic, inorganic and synthetic sorbents), comprehensive testing in the laboratory, scale-up and field, and product design (i.e. concept to prototype). The study also applied chemometrics to provide consistent, comparative methods of sorbent evaluation and performance. In addition, sorbent materials at every stage were compared against a commercial benchmark. For the first time, the impact of diesel on asphalt pavement has been quantified and assessed in a systematic way. Contrary to conventional thinking and anecdotal observations, the study determined that the action of diesel on asphalt was quite rapid (i.e. hours rather than weeks or months). This significant finding demonstrates the need to minimise the impact of hydrocarbon spills and the potential application of the sorbent option. To better understand the adsorption phenomenon, surface characterisation techniques were applied to selected sorbent materials (i.e. sand, organo-clay and cotton fibre). Brunauer Emmett Teller (BET) and thermal analysis indicated that the main adsorption mechanism for the sorbents occurred on the external surface of the material in the diffusion region (sand and organo-clay) and/or capillaries (cotton fibre). Using environmental scanning electron microscopy (ESEM), it was observed that adsorption by the interfibre capillaries contributed to the high uptake of hydrocarbons by the cotton fibre. Understanding the adsorption mechanism for these sorbents provided some guidance and scientific basis for the selection of materials. The study determined that non-woven cotton mats were ideal sorbent materials for clean-up of hydrocarbon spills. The prototype sorbent was found to perform significantly better than the commercial benchmark, displaying the following key properties: • superior hydrocarbon pick-up from the road pavement; • high hydrocarbon retention capacity under an applied load; • adequate field skid resistance post treatment; • functional and easy to use in the field (e.g. routine handling, transportation, application and recovery); • relatively inexpensive to produce due to the use of raw cotton fibre and simple production process; • environmentally friendly (e.g. renewable materials, non-toxic to environment and operators, and biodegradable); and • rapid response time (e.g. two minutes total clean-up time compared with thirty minutes for reference sorbents). The major outcomes of the research project include: a) development of a specifically designed sorbent material suitable for cleaning up hydrocarbon spills on roads; b) submission of patent application (serial number AU2005905850) for the prototype product; and c) preparation of Commercialisation Strategy to advance the sorbent product to the next phase (i.e. R&D to product commercialisation).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Current graduates in education are entering a very different profession to the one in which most of their “baby-boomer” colleagues started. It is a profession in which accountability and national high-stakes testing (e.g. NAPLAN) have become catch-cries, and where the interpretation and use of educational data is an additional challenge. This has led to schools focusing on performance, and teachers now have to analyse test data and apply the findings to their teaching.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A forced landing is an unscheduled event in flight requiring an emergency landing, and is most commonly attributed to engine failure, failure of avionics or adverse weather. Since the ability to conduct a successful forced landing is the primary indicator for safety in the aviation industry, automating this capability for unmanned aerial vehicles (UAVs) will help facilitate their integration into, and subsequent routine operations over civilian airspace. Currently, there is no commercial system available to perform this task; however, a team at the Australian Research Centre for Aerospace Automation (ARCAA) is working towards developing such an automated forced landing system. This system, codenamed Flight Guardian, will operate onboard the aircraft and use machine vision for site identification, artificial intelligence for data assessment and evaluation, and path planning, guidance and control techniques to actualize the landing. This thesis focuses on research specific to the third category, and presents the design, testing and evaluation of a Trajectory Generation and Guidance System (TGGS) that navigates the aircraft to land at a chosen site, following an engine failure. Firstly, two algorithms are developed that adapts manned aircraft forced landing techniques to suit the UAV planning problem. Algorithm 1 allows the UAV to select a route (from a library) based on a fixed glide range and the ambient wind conditions, while Algorithm 2 uses a series of adjustable waypoints to cater for changing winds. A comparison of both algorithms in over 200 simulated forced landings found that using Algorithm 2, twice as many landings were within the designated area, with an average lateral miss distance of 200 m at the aimpoint. These results present a baseline for further refinements to the planning algorithms. A significant contribution is seen in the design of the 3-D Dubins Curves planning algorithm, which extends the elementary concepts underlying 2-D Dubins paths to account for powerless flight in three dimensions. This has also resulted in the development of new methods in testing for path traversability, in losing excess altitude, and in the actual path formation to ensure aircraft stability. Simulations using this algorithm have demonstrated lateral and vertical miss distances of under 20 m at the approach point, in wind speeds of up to 9 m/s. This is greater than a tenfold improvement on Algorithm 2 and emulates the performance of manned, powered aircraft. The lateral guidance algorithm originally developed by Park, Deyst, and How (2007) is enhanced to include wind information in the guidance logic. A simple assumption is also made that reduces the complexity of the algorithm in following a circular path, yet without sacrificing performance. Finally, a specific method of supplying the correct turning direction is also used. Simulations have shown that this new algorithm, named the Enhanced Nonlinear Guidance (ENG) algorithm, performs much better in changing winds, with cross-track errors at the approach point within 2 m, compared to over 10 m using Park's algorithm. A fourth contribution is made in designing the Flight Path Following Guidance (FPFG) algorithm, which uses path angle calculations and the MacCready theory to determine the optimal speed to fly in winds. This algorithm also uses proportional integral- derivative (PID) gain schedules to finely tune the tracking accuracies, and has demonstrated in simulation vertical miss distances of under 2 m in changing winds. A fifth contribution is made in designing the Modified Proportional Navigation (MPN) algorithm, which uses principles from proportional navigation and the ENG algorithm, as well as methods specifically its own, to calculate the required pitch to fly. This algorithm is robust to wind changes, and is easily adaptable to any aircraft type. Tracking accuracies obtained with this algorithm are also comparable to those obtained using the FPFG algorithm. For all three preceding guidance algorithms, a novel method utilising the geometric and time relationship between aircraft and path is also employed to ensure that the aircraft is still able to track the desired path to completion in strong winds, while remaining stabilised. Finally, a derived contribution is made in modifying the 3-D Dubins Curves algorithm to suit helicopter flight dynamics. This modification allows a helicopter to autonomously track both stationary and moving targets in flight, and is highly advantageous for applications such as traffic surveillance, police pursuit, security or payload delivery. Each of these achievements serves to enhance the on-board autonomy and safety of a UAV, which in turn will help facilitate the integration of UAVs into civilian airspace for a wider appreciation of the good that they can provide. The automated UAV forced landing planning and guidance strategies presented in this thesis will allow the progression of this technology from the design and developmental stages, through to a prototype system that can demonstrate its effectiveness to the UAV research and operations community.