138 resultados para Monocular video
em Queensland University of Technology - ePrints Archive
Resumo:
Topographic structural complexity of a reef is highly correlated to coral growth rates, coral cover and overall levels of biodiversity, and is therefore integral in determining ecological processes. Modeling these processes commonly includes measures of rugosity obtained from a wide range of different survey techniques that often fail to capture rugosity at different spatial scales. Here we show that accurate estimates of rugosity can be obtained from video footage captured using underwater video cameras (i.e., monocular video). To demonstrate the accuracy of our method, we compared the results to in situ measurements of a 2m x 20m area of forereef from Glovers Reef atoll in Belize. Sequential pairs of images were used to compute fine scale bathymetric reconstructions of the reef substrate from which precise measurements of rugosity and reef topographic structural complexity can be derived across multiple spatial scales. To achieve accurate bathymetric reconstructions from uncalibrated monocular video, the position of the camera for each image in the video sequence and the intrinsic parameters (e.g., focal length) must be computed simultaneously. We show that these parameters can be often determined when the data exhibits parallax-type motion, and that rugosity and reef complexity can be accurately computed from existing video sequences taken from any type of underwater camera from any reef habitat or location. This technique provides an infinite array of possibilities for future coral reef research by providing a cost-effective and automated method of determining structural complexity and rugosity in both new and historical video surveys of coral reefs.
Resumo:
This study presents a segmentation pipeline that fuses colour and depth information to automatically separate objects of interest in video sequences captured from a quadcopter. Many approaches assume that cameras are static with known position, a condition which cannot be preserved in most outdoor robotic applications. In this study, the authors compute depth information and camera positions from a monocular video sequence using structure from motion and use this information as an additional cue to colour for accurate segmentation. The authors model the problem similarly to standard segmentation routines as a Markov random field and perform the segmentation using graph cuts optimisation. Manual intervention is minimised and is only required to determine pixel seeds in the first frame which are then automatically reprojected into the remaining frames of the sequence. The authors also describe an automated method to adjust the relative weights for colour and depth according to their discriminative properties in each frame. Experimental results are presented for two video sequences captured using a quadcopter. The quality of the segmentation is compared to a ground truth and other state-of-the-art methods with consistently accurate results.
Resumo:
Thermal-infrared imagery is relatively robust to many of the failure conditions of visual and laser-based SLAM systems, such as fog, dust and smoke. The ability to use thermal-infrared video for localization is therefore highly appealing for many applications. However, operating in thermal-infrared is beyond the capacity of existing SLAM implementations. This paper presents the first known monocular SLAM system designed and tested for hand-held use in the thermal-infrared modality. The implementation includes a flexible feature detection layer able to achieve robust feature tracking in high-noise, low-texture thermal images. A novel approach for structure initialization is also presented. The system is robust to irregular motion and capable of handling the unique mechanical shutter interruptions common to thermal-infrared cameras. The evaluation demonstrates promising performance of the algorithm in several environments.
Resumo:
Designers need to develop good observational skills in order to conduct user studies that reveal the subtleties of human interactions and adequately inform design activity. In this paper we describe a game format that we have used in concert with wiki-web technology, to engage our IT and Information Environments students in developing much sharper observational skills. The Video Card Game is a method of video analysis that is suited to design practitioners as well as to researchers. It uses the familiar format of a card game similar to "Happy Families,, to help students develop themes of interactions from watching video clips. Students then post their interaction themes on wiki-web pages, which allows the teaching team and other students to edit and comment on them. We found that the tangible (cards), game, role playing and sharing aspects of this method led to a much larger amount of interaction and discussion between student groups and between students and the teaching team, than we have achieved using our traditional teaching methods, while taking no more time on the part of the teaching staff. The quality of the resulting interaction themes indicates that this method fosters development of observational skills.In the paper we describe the motivations, method and results in full. We also describe the research context in which we collected the videotape data, and how this method relates to state of the art research methods in interaction design for ubiquitous computing technology.
Resumo:
When should a person who has a heart attack not be resuscitated? When should a patient no longer be kept alive on a ventilator, or be provided with food and water by a tube? When should a person not be given a blood transfusion they need to stay alive? The answers to these questions depend on a number of factors including the mental or physical condition of the patient and any wishes they have expressed prior to losing the ability to make this decision, as well as the requirements of good medical practice. This video is a record of a public lecture held on 7 July 2004 by the Faculty of Law at the Queensland University of Technology, in association with the Faculty of Health, the Centre for Palliative Care Research and Education, and Palliative Care Queensland.
Resumo:
Despite the size and growth of the computer and video gaming industry – as well as the increasing use of the medium for the placement of advertising and product placement – researchers have neglected this area. By drawing on existing literature and research in similar and related areas of film product placement, sponsorship and interactivity, the authors present a conceptual overview and identify areas for research.
Resumo:
With increasing revenues for video game manufacturers, higher software sales and a more diverse audience, the video games industry has been experiencing strong and rapid growth in recent times, rivalling other forms of entertainment. As a result, games have begun to attract the attention of marketing practitioners who are finding it increasingly difficult to attract consumer attention, and are seeking alternative media for marketing communications. This paper provides a review of the video games industry in the United States and raises the question as to whether games are a viable new medium for marketing messages. Areas for research are identified.
Resumo:
Despite its growth and prominence, product placement is generally under-researched and this is even more apparent in the area of placement in video gaming. This paper presents exploratory focus group research into this practice. Findings indicate that the introductory footage to a game provides placement opportunities with the highest level of recall, while peripheral non-action is the worst. Interestingly, recall also appears to be higher for individual brands as opposed to manufacturer brands.
Resumo:
This chapter outlines examples of classroom activities that aim to make connections between young people’s everyday experiences with video games and the formal high school curriculum. These classroom activities were developed within the emerging field of digital media literacy. Digital media literacy combines elements of ‘traditional’ approaches to media education with elements of technology and information education (Buckingham, 2007; Warschauer, 2006). It is an educational field that has gained significant attention in recent years. For example, digital media literacy has become a significant objective for media policy makers in response to the increased social and cultural roles of new media technologies and controversies associated with young people’s largely unregulated online participation. Media regulators, educational institutions and independent organizations1 in the United States, Canada, the United Kingdom and Australia have developed digital media literacy initiatives that aim to provide advice to parents, teachers and young people.
Resumo:
Surveillance networks are typically monitored by a few people, viewing several monitors displaying the camera feeds. It is then very difficult for a human operator to effectively detect events as they happen. Recently, computer vision research has begun to address ways to automatically process some of this data, to assist human operators. Object tracking, event recognition, crowd analysis and human identification at a distance are being pursued as a means to aid human operators and improve the security of areas such as transport hubs. The task of object tracking is key to the effective use of more advanced technologies. To recognize an event people and objects must be tracked. Tracking also enhances the performance of tasks such as crowd analysis or human identification. Before an object can be tracked, it must be detected. Motion segmentation techniques, widely employed in tracking systems, produce a binary image in which objects can be located. However, these techniques are prone to errors caused by shadows and lighting changes. Detection routines often fail, either due to erroneous motion caused by noise and lighting effects, or due to the detection routines being unable to split occluded regions into their component objects. Particle filters can be used as a self contained tracking system, and make it unnecessary for the task of detection to be carried out separately except for an initial (often manual) detection to initialise the filter. Particle filters use one or more extracted features to evaluate the likelihood of an object existing at a given point each frame. Such systems however do not easily allow for multiple objects to be tracked robustly, and do not explicitly maintain the identity of tracked objects. This dissertation investigates improvements to the performance of object tracking algorithms through improved motion segmentation and the use of a particle filter. A novel hybrid motion segmentation / optical flow algorithm, capable of simultaneously extracting multiple layers of foreground and optical flow in surveillance video frames is proposed. The algorithm is shown to perform well in the presence of adverse lighting conditions, and the optical flow is capable of extracting a moving object. The proposed algorithm is integrated within a tracking system and evaluated using the ETISEO (Evaluation du Traitement et de lInterpretation de Sequences vidEO - Evaluation for video understanding) database, and significant improvement in detection and tracking performance is demonstrated when compared to a baseline system. A Scalable Condensation Filter (SCF), a particle filter designed to work within an existing tracking system, is also developed. The creation and deletion of modes and maintenance of identity is handled by the underlying tracking system; and the tracking system is able to benefit from the improved performance in uncertain conditions arising from occlusion and noise provided by a particle filter. The system is evaluated using the ETISEO database. The dissertation then investigates fusion schemes for multi-spectral tracking systems. Four fusion schemes for combining a thermal and visual colour modality are evaluated using the OTCBVS (Object Tracking and Classification in and Beyond the Visible Spectrum) database. It is shown that a middle fusion scheme yields the best results and demonstrates a significant improvement in performance when compared to a system using either mode individually. Findings from the thesis contribute to improve the performance of semi-automated video processing and therefore improve security in areas under surveillance.