600 resultados para Mechanical solvation dynamics
em Queensland University of Technology - ePrints Archive
Resumo:
Bone is characterized with an optimized combination of high stiffness and toughness. The understanding of bone nanomechanics is critical to the development of new artificial biological materials with unique properties. In this work, the mechanical characteristics of the interfaces between osteopontin (OPN, a noncollagenous protein in extrafibrillar protein matrix) and hydroxyapatite (HA, a mineral nanoplatelet in mineralized collagen fibrils) were investigated using molecular dynamics method. We found that the interfacial mechanical behaviour is governed by the electrostatic attraction between acidic amino acid residues in OPN and calcium in HA. Higher energy dissipation is associated with the OPN peptides with a higher number of acidic amino acid residues. When loading in the interface direction, new bonds between some acidic residues and HA surface are formed, resulting in a stick-slip type motion of OPN peptide on the HA surface and high interfacial energy dissipation. The formation of new bonds during loading is considered to be a key mechanism responsible for high fracture resistance observed in bone and other biological materials.
Resumo:
Cycloidal drives are compact, high-ratio gear transmission systems used in a wide range of mechanical applications from conveyor drives to articulated robots. This research hypothesises that these drives can be successfully applied in dynamic loading situations and thereby focuses on the understanding of differences between static and dynamic loading conditions where load varies with time. New methods of studying the behaviour of these drives under static and dynamic loading circumstances were developed, leading to novel understanding and knowledge. A new model was developed to facilitate research and development on Cycloidal drives with potential benefits for manufacturing, robotics and mechanical-process-industries worldwide.
Resumo:
Braking or traction torque is regarded as an important source of wheelset skid and a potential source of derailment risk that adversely affects the safety levels of train operations; therefore, this research examines the effect of braking/traction torque to the longitudinal and lateral dynamics of wagons. This paper reports how train operations safety could be adversely affected due to various braking strategies. Sensitivity of wagon dynamics to braking severity is illustrated through numerical examples. The influence of wheel/rail interface friction coefficient and the effects of two types of track geometry defects on wheel unloading ratio and wagon pitch are also discussed in the paper.
Resumo:
This paper aims to develop an effective numerical simulation technique for the dynamic deflection analysis of nanotubes-based nanoswitches. The nanoswitch is simplified to a continuum structure, and some key material parameters are extracted from typical molecular dynamics (MD). An advanced local meshless formulation is applied to obtain the discretized dynamic equations for the numerical solution. The developed numerical technique is firstly validated by the static deflection analyses of nanoswitches, and then, the fundamental dynamic properties of nanoswitches are analyzed. A parametric comparison with the results in the literature and from experiments shows that the developed modelling approach is accurate, efficient and effective.
Resumo:
The increasing use of biodegradable devices in tissue engineering and regenerative medicine means it is essential to study and understand their degradation behaviour. Accelerated degradation systems aim to achieve similar degradation profiles within a shorter period of time, compared with standard conditions. However, these conditions only partially mimic the actual situation, and subsequent analyses and derived mechanisms must be treated with caution and should always be supported by actual long-term degradation data obtained under physiological conditions. Our studies revealed that polycaprolactone (PCL) and PCL-composite scaffolds degrade very differently under these different degradation conditions, whilst still undergoing hydrolysis. Molecular weight and mass loss results differ due to the different degradation pathways followed (surface degradation pathway for accelerated conditions and bulk degradation pathway for simulated physiological conditions). Crystallinity studies revealed similar patterns of recrystallization dynamics, and mechanical data indicated that the scaffolds retained their functional stability, in both instances, over the course of degradation. Ultimately, polymer degradation was shown to be chiefly governed by molecular weight, crystallinity susceptibility to hydrolysis and device architecture considerations whilst maintaining its thermodynamic equilibrium.
Resumo:
This paper presents a multiscale study using the coupled Meshless technique/Molecular Dynamics (M2) for exploring the deformation mechanism of mono-crystalline metal (focus on copper) under uniaxial tension. In M2, an advanced transition algorithm using transition particles is employed to ensure the compatibility of both displacements and their gradients, and an effective local quasi-continuum approach is also applied to obtain the equivalent continuum strain energy density based on the atomistic poentials and Cauchy-Born rule. The key parameters used in M2 are firstly investigated using a benchmark problem. Then M2 is applied to the multiscale simulation for a mono-crystalline copper bar. It has found that the mono-crystalline copper has very good elongation property, and the ultimate strength and Young's modulus are much higher than those obtained in macro-scale.
Resumo:
A computational fluid dynamics (CFD) analysis has been performed for a flat plate photocatalytic reactor using CFD code FLUENT. Under the simulated conditions (Reynolds number, Re around 2650), a detailed time accurate computation shows the different stages of flow evolution and the effects of finite length of the reactor in creating flow instability, which is important to improve the performance of the reactor for storm and wastewater reuse. The efficiency of a photocatalytic reactor for pollutant decontamination depends on reactor hydrodynamics and configurations. This study aims to investigate the role of different parameters on the optimization of the reactor design for its improved performance. In this regard, more modelling and experimental efforts are ongoing to better understand the interplay of the parameters that influence the performance of the flat plate photocatalytic reactor.
Resumo:
Based on the embedded atom method (EAM) and molecular dynamics (MD) method, the deformation properties of Cu nanowires with different single defects under dynamic compression have been studied. The mechanical behaviours of the perfect nanowire are first studied, and the critical stress decreases with the increase of the nanowire’s length, which is well agreed with the modified Euler theory. We then consider the effects to the buckling phenomenon resulted from different defects. It is found that obvious decrease of the critical stress is resulted from different defects, and the largest decrease is found in nanowire with the surface vertical defect. Surface defects are found exerting larger influence than internal defects. The buckling duration is found shortened due to different defects except the nanowire with surface horizon defect, which is also found possessing the largest deflection. Different deflections are also observed for different defected nanowires. It is find that due to surface defects, only deflection in one direction is happened, but for internal defects, more complex deflection circumstances are observed.
Resumo:
Molecular dynamics (MD) simulations have been carried out to investigate the defect’s effect on the mechanical properties of copper nanowire with different crystallographic orientations, under tensile deformation. Three different crystallographic orientations have been considered. The deformation mechanism has been carefully discussed. It is found that the Young’s modulus is insensitive to the defect, even when the nanowire’s crystallographic orientation is different. However, due to the defect’s effect, the yield strength and yield strain appear a large decrease. The defects have played a role of dislocation sources, the slips or stacking faults are first generated around the locations of the defects. The necking locations have also been affected by different defects. Due to the surface defect, the plastic deformation has received a large influence for the <001>/{110} and <110> orientated nanowires, and a relative small influence is seen for the <111> nanowire.
Resumo:
Competitive sailing is characterised by continuous interdependencies of decisions and actions. All actions imply a permanent monitoring of the environmental conditions, such as intensity and direction of the wind, sea characteristics, and the behaviour of the opponent sailors. These constraints on sailors’ behavior are in constant change implying continuous adjustments in sailors’ actions and decisions. Among the different parts of a regatta, tactics and strategy at the start are particularly relevant. Among coaches there is an adage that says that “the start is 50% of a regatta” (Houghton, 1984; Saltonstall, 1983/1986). Olympic sailing regattas are performed with boats of the same class, by one, two or three sailors, depending on the boat class. Normally before the start, sailors visit the racing venue and analyse wind and sea characteristics, in order to fine- tune their boats accordingly. Then, five minutes before the start, sailors initiate starting procedures in order to be in a favourable position at the starting line (at the “second zero”). This position is selected during the start period according to wind shifts tendencies and the actions of other boats (Figure 11.1). Only after the start signal can the boats cross the imaginary starting line between the race committee signal boat “A” and the pin end boat. The start takes place against the wind (upwind), and the boats start racing in the direction of mark 1. Based on the evaluation of the sea and wind characteristics (e.g. if the wind is stronger at a particular place on the course), sailors re- adjust their strategy for the regatta. This strategy may change during the regatta, according to wind changes and adversary actions. More to the point, strategic decisions constrain and are constrained by on- line decisions during the regatta.
Resumo:
Molecular dynamics (MD) simulations have been carried out to investigate the defect’s effect on the mechanical properties of single-crystal copper nanowire with different surface defects, under torsion deformation. The torsional rigidity is found insensitive to the surface defects and the critical angle appears an obvious decrease due to the surface defects, the largest decrease is found for the nanowire with surface horizon defect. The deformation mechanism appears different degrees of influence due to surface defects. The surface defects play a role of dislocation sources. Comparing with single intrinsic stacking faults formation for the perfect nanowire, much affluent deformation processes have been activated because of surface defects, for instance, we find the twins formation for the nanowire with a surface 45o defect.