159 resultados para MARROW STROMAL CELLS
em Queensland University of Technology - ePrints Archive
Resumo:
This study aimed to determine the cellular aging of osteophyte-derived mesenchymal cells (oMSCs) in comparison to patient-matched bone marrow stromal cells (bMSCs). Extensive expansion of the cell cultures was performed and early and late passage cells (passages 4 and 9, respectively) were used to study signs of cellular aging, telomere length, telomerase activity, and cell-cycle-related gene expression. Our results showed that cellular aging was more prominent in bMSCs than in oMSCs, and that oMSCs had longer telomere length in late passages compared with bMSCs, although there was no significant difference in telomere lengths in the early passages in either cell type. Telomerase activity was detectable only in early passage oMSCs and not in bMSCs. In osteophyte tissues telomerase-positive cells were found to be located perivascularly and were Stro-1 positive. Fifteen cell-cycle regulator genes were investigated and only three genes (APC, CCND2, and BMP2) were differentially expressed between bMSC and oMSC. Our results indicate that oMSCs retain a level of telomerase activity in vitro, which may account for the relatively greater longevity of these cells, compared with bMSCs, by preventing replicative senescence. J. Cell. Biochem. 108: 839-850, 2009. (c) 2009 Wiley-Liss, Inc.
Resumo:
The repair of large non-unions in long bones remains a significant clinical problem due to high failure rates and limited tissue availability for auto- and allografts. Many cell-based strategies for healing bone defects deliver bone marrow stromal cells to the defect site to take advantage of the inherent osteogenic capacity of this cell type. However, many factors, including donor age and ex vivo expansion of the cells, cause bone marrow stromal cells to lose their differentiation ability. To overcome these limitations, we have genetically engineered bone marrow stromal cells to constitutively overexpress the osteoblast specific transcription factor Runx2. In the present study, we examined Runx2-modified bone marrow stromal cells, delivered via poly(caprolactone) scaffolds loaded with type I collagen meshes, in critically-sized segmental defects in rats compared to unmodified cells, cell-free scaffolds and empty defects. Runx2 expression in bone marrow stromal cells accelerated healing of critically-sized defects compared to unmodified bone marrow stromal cells and defects receiving cell-free treatments. These findings provide an accelerated method for healing large bone defects which may reduce recovery time and the need for external fixation of critically-sized defects.
Resumo:
The periosteum plays an indispensable role in both bone formation and bone defect healing. In this study we constructed an artificial in vitro periosteum by incorporating osteogenic differentiated bone marrow stromal cells (BMSCs) and cobalt chloride (CoCl(2))-treated BMSCs. The engineered periostea were implanted both subcutaneously and into skull bone defects in SCID mice to investigate ectopic and orthotopic osteogenesis and vascularization. After two weeks in subcutaneous and four weeks in bone defect areas, the implanted constructs were assessed for ectopic and orthotopic osteogenesis and vascularization by micro-CT, histomorphometrical and immunohistochemical methods. The results showed that CoCl(2) pre-treated BMSCs induced higher degree of vascularization and enhanced osteogenesis within the implants in both ectopic and orthotopic areas. This study provided a novel approach using BMSCs sourced from the same patient for both osteogenic and pro-angiogenic purposes in constructing tissue engineered periosteum to enhance vascularized osteogenesis.
Resumo:
Mesenchymal Stem Cells (MSC) are frequently incorporated into osteochondral implants and cell seeding is often facilitated with hydrogels which exert a profound influence on the chondrogenic differentiation of MSC. An attempt was made to elucidate this effect by comparing the chondrogenic differentiation of Bone Marrow Stromal Cells (BMSC) in fibrin and fibrin alginate composites. A biphasic osteochondral model which simulated the native in vivo environment was employed in the study. In the first stage of the experiment, BMSC was encapsulated in fibrin, Fibrin Alginate 0.3% (FA0.3) and 0.6% (FA0.6). Chondrogenic differentiation within these cell-hydrogel pellets was compared against that of standard cell pellets under inductive conditions and the matrices which supported chondrogenesis were used in the cartilage phase of biphasic constructs. Neo-cartilage growth was monitored in these cocultures. It was observed that hydrogel encapsulation influenced mesenchymal condensation which preceded chondrogenic differentiation. Early cell agglomeration was observed in fibrin as compared to fibrin alginate composites. These fibrin encapsulated cells differentiated into chondrocytes which secreted aggrecan and collagen II. When the alginate content rose from 0.3 to 0.6%, chondrogenic differentiation declined with a reduction in the expression of collagen II and aggrecan. Fibrin and FA0.3 were tested in the cartilage phase of the biphasic osteochondral constructs and the former supported superior cartilage growth with higher cellularity, total Glycosaminoglycan (GAG) and collagen II levels. The FA0.3 cartilage phase was found to be fragmented and partially calcified. The use of fibrin for cartilage repair was advocated as it facilitated BMSC chondrogenesis and cartilaginous growth in an osteochondral environment.
Resumo:
Silicon (Si) is a trace element, which plays an important role in human bone growth. Si has been incorporated into biomaterials for bone regeneration in order to improve their osteogenic potential, both in vitro and in vivo. Little is known, however, as to how Si ions elicit their biological response on bone-forming cells. The aim of this study was to investigate the effect of Si ions on the proliferation, differentiation, bone-related gene expression and cell signalling pathways of bone marrow stromal cells (BMSCs) by comparing the BMSC responses to different concentrations of NaCl and Na2SiO3, while taking into account and excluding the effect of Na ions. Our study showed that Si ions at a concentration of 0.625 mM significantly enhanced the proliferation, mineralization nodule formation, bone-related gene expression (OCN, OPN and ALP) and bone matrix proteins (ALP and OPN) of BMSCs. Furthermore, Si ions at 0.625 mM could counteract the effect of the WNT inhibitor (W.I.) cardamonin on the osteogenic genes expression, (OPN, OCN and ALP), WNT and SHH signalling pathway-related genes in BMSCs. These results suggest that Si ions by themselves play an important role in regulating the proliferation and osteogenic differentiation of BMSCs, with the involvement of WNT and SHH signalling pathways. Our study provides evidence to explain possible molecular mechanisms whereby Si ions released from Si-containing biomaterials can acquire enhanced bioactivity at desired concentration.
Resumo:
Bioactive materials with osteostimulation properties are of great importance to promote osteogenic differentiation of human bone marrow stromal cells (hBMSCs) for potential bone regeneration. We have recently synthesized nagelschmidtite (NAGEL, Ca7Si2P2O16) ceramic powders which showed excellent apatite-mineralization ability. The aim of this study was to investigate the interaction of hBMSCs with NAGEL bioceramic bulks and their ionic extracts, and to explore the osteostimulation properties of NAGEL bioceramics and the possible molecular mechanism. The cell attachment, proliferation, bone-related gene expression (ALP, OPN and OCN) and WNT signalling pathways (WNT3a, FZD6, AXIN2 and CTNNB) of hBMSCs cultured on NAGEL bioceramic disks were systematically studied. We further investigated the biological effects of ionic products from NAGEL powders on cell proliferation and osteogenic differentiation of hBMSCs by culturing cells with NAGEL extracts. Furthermore, the effect of NAGEL bioceramics on the osteogenic differentiation in hBMSCs was also investigated with the addition of cardamonin, a WNT inhibitor. The results showed that NAGEL bioceramic disks supported the attachment and proliferation of hBMSCs, and significantly enhanced the bone-related gene expression and WNT signalling pathway of hBMSCs, compared to conventional beta-tricalcium phosphate (β-TCP) bioceramic disks and blank controls. The ionic products from NAGEL powders also significantly promoted the proliferation, bone and WNT-related gene expression of hBMSCs. It was also identified that NAGEL bioceramics could bypass the action of the WNT inhibitor (10 μM) to stimulate the selected osteogenic genes in hBMSCs. Our results suggest that NAGEL bioceramics possess excellent in vitro osteostimulation properties. The possible mechanism for the osteostimulation may be directly related to the released Si, Ca and P-containing ionic products from NAGEL bioceramics which activate bone-related gene expression and WNT signalling pathway of hBMSCs. The present study suggests that NAGEL bioceramics are a potential bone regeneration material with significant osteostimulation capacity.
Resumo:
Development of hypoxia-mimicking bone tissue engineering scaffolds is of great importance in stimulating angiogenesis for bone regeneration. Dimethyloxallyl glycine (DMOG) is a cell-permeable, competitive inhibitor of hypoxia-inducible factor prolyl hydroxylase (HIF-PH), which can stabilize hypoxia-inducible factor 1α (HIF-1α) expression. The aim of this study was to develop hypoxia-mimicking scaffolds by delivering DMOG in mesoporous bioactive glass (MBG) scaffolds and to investigate whether the delivery of DMOG could induce a hypoxic microenvironment for human bone marrow stromal cells (hBMSC). MBG scaffolds with varied mesoporous structures (e.g. surface area and mesopore volume) were prepared by controlling the contents of mesopore-template agent. The composition, large-pore microstructure and mesoporous properties of MBG scaffolds were characterized. The effect of mesoporous properties on the loading and release of DMOG in MBG scaffolds was investigated. The effects of DMOG delivery on the cell morphology, cell viability, HIF-1α stabilization, vascular endothelial growth factor (VEGF) secretion and bone-related gene expression (alkaline phosphatase, ALP; osteocalcin, OCN; and osteopontin, OPN) of hBMSC in MBG scaffolds were systematically investigated. The results showed that the loading and release of DMOG in MBG scaffolds can be efficiently controlled by regulating their mesoporous properties via the addition of different contents of mesopore-template agent. DMOG delivery in MBG scaffolds had no cytotoxic effect on the viability of hBMSC. DMOG delivery significantly induced HIF-1α stabilization, VEGF secretion and bone-related gene expression of hBMSC in MBG scaffolds in which DMOG counteracted the effect of HIF-PH and stabilized HIF-1α expression under normoxic condition. Furthermore, it was found that MBG scaffolds with slow DMOG release significantly enhanced the expression of bone-related genes more than those with instant DMOG release. The results suggest that the controllable delivery of DMOG in MBG scaffolds can mimic a hypoxic microenvironment, which not only improves the angiogenic capacity of hBMSC, but also enhances their osteogenic differentiation.
Resumo:
The nanostructured surface of biomaterials plays an important role in improving their in vitro cellular bioactivity as well as stimulating in vivo tissue regeneration. Inspired by the mussel’s adhesive versatility, which is thought to be due to the plaque–substrate interface being rich in 3,4-dihydroxy-L-phenylalamine (DOPA) and lysine amino acids, in this study we developed a self-assembly method to prepare a uniform calcium phosphate (Ca-P)/polydopamine composite nanolayer on the surface of b-tricalcium phosphate (b-TCP) bioceramics by soaking b-TCP bioceramics in Tris–dopamine solution. It was found that the addition of dopamine, reaction temperature and reaction time are three key factors inducing the formation of a uniform Ca-P/polydopamine composite nanolayer. The formation mechanism of a Ca-P/polydopamine composite nanolayer involved two important steps: (i) the addition of dopamine to Tris–HCl solution decreases the pH value and accelerates Ca and P ionic dissolution from the crystal boundaries of b-TCP ceramics; (ii) dopamine is polymerized to form self-assembled polydopamine film and, at the same time, nanosized Ca-P particles are mineralized with the assistance of polydopamine, in which the formation of polydopamine occurs simultaneously with Ca-P mineralization (formation of nanosized microparticles composed of calcium phosphate-based materials), and finally a self-assembled Ca-P/polydopamine composite nanolayer forms on the surface of the b-TCP ceramics. Furthermore, the formed self-assembled Ca-P/polydopamine composite nanolayer significantly enhances the surface roughness and hydrophilicity of b-TCP ceramics, and stimulates the attachment, proliferation, alkaline phosphate (ALP) activity and bone-related gene expression (ALP, OCN, COL1 and Runx2) of human bone marrow stromal cells. Our results suggest that the preparation of self-assembled Ca-P/polydopamine composite nanolayers is a viable method to modify the surface of biomaterials by significantly improving their surface physicochemical properties and cellular bioactivity for bone regeneration application.
Resumo:
Poly(l-lactide) (PLLA), a versatile biodegradable polymer, is one of the most commonly-used materials for tissue engineering applications. To improve cell affinity for PLLA, poly(ethylene glycol) (PEG) was used to develop diblock copolymers. Human bone marrow stromal cells (hBMSCs) were cultured on MPEG-b-PLLA copolymer films to determine the effects of modification on the attachment and proliferation of hBMSC. The mRNA expression of 84 human extracellular matrix (ECM) and adhesion molecules was analyzed using RT-qPCR to understand the underlying mechanisms. It was found that MPEG-b-PLLA copolymer films significantly improved cell adhesion, extension, and proliferation.This was found to be related to the significant upregulation of two adhesion genes, CDH1 and CTNND2, which encode 1-cadherin and delta-2-catenin, respectively, two key components for the cadherin-catenin complex. In summary, MPEG-b-PLLA copolymer surfaces improved initial cell adhesion by stimulation of adhesion molecule gene expression.
Resumo:
To enhance and regulate cell affinity for poly (l-lactic acid) (PLLA) based materials, two hydrophilic ligands, poly (ethylene glycol) (PEG) and poly (l-lysine) (PLL), were used to develop triblock copolymers: methoxy-terminated poly (ethylene glycol)-block-poly (l-lactide)-block-poly (l-lysine) (MPEG-b-PLLA-b-PLL) in order to regulate protein absorption and cell adhesion. Bone marrow stromal cells (BMSCs) were cultured on different composition of MPEG-b-PLLA-b-PLL copolymer films to determine the effect of modified polymer surfaces on BMSC attachment. To understand the molecular mechanism governing the initial cell adhesion on difference polymer surfaces, the mRNA expression of 84 human extracellular matrix (ECM) and adhesion molecules was analysed using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). It was found that down regulation of adhesion molecules was responsible for the impaired BMSC attachment on PLLA surface. MPEG-b-PLLA-b-PLL copolymer films improved significantly the cell adhesion and cytoskeleton expression by upregulation of relevant molecule genes significantly. Six adhesion genes (CDH1, ITGL, NCAM1, SGCE, COL16A1, and LAMA3) were most significantly influenced by the modified PLLA surfaces. In summary, polymer surfaces altered adhesion molecule gene expression of BMSCs, which consequently regulated cell initial attachment on modified PLLA surfaces.
Resumo:
In this study, cell sheets comprising multilayered porcine bone marrow stromal cells (BMSC) were assembled with fully interconnected scaffolds made from medical-grade polycaprolactone–calcium phosphate (mPCL–CaP), for the engineering of structural and functional bone grafts. The BMSC sheets were harvested from culture flasks and wrapped around pre-seeded composite scaffolds. The layered cell sheets integrated well with the scaffold/cell construct and remained viable, with mineralized nodules visible both inside and outside the scaffold for up to 8 weeks culture. Cells within the constructs underwent classical in vitro osteogenic differentiation with the associated elevation of alkaline phosphatase activity and bone-related protein expression. In vivo, two sets of cell-sheet-scaffold/cell constructs were transplanted under the skin of nude rats. The first set of constructs (554mm3) were assembled with BMSC sheets and cultured for 8 weeks before implantation. The second set of constructs (10104mm3) was implanted immediately after assembly with BMSC sheets, with no further in vitro culture. For both groups, neo cortical and well-vascularised cancellous bone were formed within the constructs with up to 40% bone volume. Histological and immunohistochemical examination revealed that neo bone tissue formed from the pool of seeded BMSC and the bone formation followed predominantly an endochondral pathway, with woven bone matrix subsequently maturing into fully mineralized compact bone; exhibiting the histological markers of native bone. These findings demonstrate that large bone tissues similar to native bone can be regenerated utilizing BMSC sheet techniques in conjunction with composite scaffolds whose structures are optimized from a mechanical, nutrient transport and vascularization perspective.
Resumo:
Application of cell-–biomaterial systems in regenerative medicine can be facilitated by their successful low temperature preservation. Vitrification, which avoids ice crystal formation by amorphous solidification, is an emerging approach to cryopreservation. Developing vitrification strategy, effective cryopreservation of alginate–fibrin beads with porcine mesenchymal stromal cells has been achieved in this study. The cell–biomaterial constructs were pre-cultured for 20 days before cryopreservation, allowing for cell proliferation and construct stabilization. Ethylene glycol (EG) was employed as the basic cryoprotectant for two equilibration solutions. Successful cryopreservation of the constructs was achieved using vitrification solution composed of penetrating (EG MW 62 Da) and non-penetrating (sucrose MW 342 Da) cryoprotectants. Stepwise procedure of introduction to and removal of cryoprotectants was brief; direct plunging into liquid nitrogen was applied. Cell viability, evaluated by combining live/death staining and confocal laser microscopy, was similar for both control and vitrified cells in the beads. No detectable damage of microstructure of cryopreserved beads was found as shown by scanning electron microscopy. Both osteogenically induced control and vitrified cells in the constructs were equally capable of mineral production and deposition. There was no statistically significant difference in metabolic activity and proliferation between both groups during the entire culture period. Our study leads to the conclusion that the developed cryopreservation protocol allowed to maintain the integrity of the beads while preserving the ability of the pig bone marrow derived mesenchymal stromal cells to proliferate and subsequently differentiate; demonstrating that vitrification is a promising approach for cryopreser-vation of “ready-to-use” cell–biomaterial constructs.
Resumo:
Decline in the frequency of potent mesenchymal stem cells (MSCs) has been implicated in ageing and degenerative diseases. Increasing the circulating stem cell population can lead to renewed recruitment of these potent cells at sites of damage. Therefore, identifying the ideal cells for ex vivo expansion will form a major pursuit of clinical applications. This study is a follow-up of previous work that demonstrated the occurrence of fast-growing multipotential cells from the bone marrow samples. To investigate the molecular processes involved in the existence of such varying populations, gene expression studies were performed between fast- and slow-growing clonal populations to identify potential genetic markers associated with stemness using the quantitative real-time polymerase chain reaction comprising a series of 84 genes related to stem cell pathways. A group of 10 genes were commonly overrepresented in the fast-growing stem cell clones. These included genes that encode proteins involved in the maintenance of embryonic and neural stem cell renewal (sex-determining region Y-box 2, notch homolog 1, and delta-like 3), proteins associated with chondrogenesis (aggrecan and collagen 2 A1), growth factors (bone morphogenetic protein 2 and insulin-like growth factor 1), an endodermal organogenesis protein (forkhead box a2), and proteins associated with cell-fate specification (fibroblast growth factor 2 and cell division cycle 2). Expression of diverse differentiation genes in MSC clones suggests that these commonly expressed genes may confer the maintenance of multipotentiality and self-renewal of MSCs.