410 resultados para Least Energy Solutions

em Queensland University of Technology - ePrints Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This 600+ page online education program provides free access to a comprehensive education and training package that brings together the knowledge of how countries, specifically Australia, can achieve at least 60 percent cuts to greenhouse gas emissions by 2050. This resource has been developed in line with the activities of the CSIRO Energy Transformed Flagship research program which is focused on research that will assist Australia to achieve this target. This training package provides industry, governments, business and households with the knowledge they need to realise at least 30 percent energy efficiency savings in the short term while providing a strong basis for further improvement. It also provides an updated overview of advances in low carbon technologies, renewable energy and sustainable transport to help achieve a sustainable energy future. Whist this education and training package has an Australian focus, it outlines sustainable energy strategies and provide links to numerous online reports which will assist climate change mitigation efforts globally. This training program seeks to compliment other initiatives seeking to encourage the reduction of greenhouse gas emissions through behaviour change, sustainable consumption, and constructive changes in economic incentives and policy.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A statistical approach is used in the design of a battery-supercapacitor energy storage system for a wind farm. The design exploits the technical merits of the two energy storage mediums, in terms of the differences in their specific power and energy densities, and their ability to accommodate different rates of change in the charging/discharging powers. By treating the input wind power as random and using a proposed coordinated power flows control strategy for the battery and the supercapacitor, the approach evaluates the energy storage capacities, the corresponding expected life cycle cost/year of the storage mediums, and the expected cost/year of unmet power dispatch. A computational procedure is then developed for the design of a least-cost/year hybrid energy storage system to realize wind power dispatch at a specified confidence level.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Supplying peak energy demand in a cost effective, reliable manner is a critical focus for utilities internationally. Successfully addressing peak energy concerns requires understanding of all the factors that affect electricity demand especially at peak times. This paper is based on past attempts of proposing models designed to aid our understanding of the influences on residential peak energy demand in a systematic and comprehensive way. Our model has been developed through a group model building process as a systems framework of the problem situation to model the complexity within and between systems and indicate how changes in one element might flow on to others. It is comprised of themes (social, technical and change management options) networked together in a way that captures their influence and association with each other and also their influence, association and impact on appliance usage and residential peak energy demand. The real value of the model is in creating awareness, understanding and insight into the complexity of residential peak energy demand and in working with this complexity to identify and integrate the social, technical and change management option themes and their impact on appliance usage and residential energy demand at peak times.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Emerging 21st century challenges require higher education institutions (HEIs) to play a key role in developing graduates and professionals, particularly in engineering and design, who can forge sustainable solutions. The trouble is there’s currently a significant lag in the preparedness of HEIs to provide the stream of professionals needed. Addressing energy efficiency competencies is one critical area.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Damage localization induced by strain softening can be predicted by the direct minimization of a global energy function. This article concerns the computational strategy for implementing this principle for softening materials such as concrete. Instead of using heuristic global optimization techniques, our strategies are a hybrid of local optimization methods with a path-finding approach to ensure a global optimum. With admissible nodal displacements being independent variables, it is easy to deal with the geometric (mesh) constraint conditions. The direct search optimization methods recover the localized solutions for a range of softening lattice models which are representative of quasi-brittle structures

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effectiveness of using thermally activated hydrotalcite materials has been investigated for the removal of arsenate, vanadate, and molybdate in individual and mixed solutions. Results show that increasing the Mg,Al ratio to 4:1 causes an increase in the percentage of anions removed from solution. The order of affinity of the three anions analysed in this investigation is arsenate, vanadate, and molybdate. By comparisons with several synthetic hydrotalcite materials, the hydrotalcite structure in the seawater neutralised red mud (SWN-RM) has been determined to consist of magnesium and aluminium with a ratio between 3.5:1 and 4:1. Thermally activated seawater neutralised red mud removes at least twice the concentration of anionic species than thermally activated red mud alone, due to the formation of 40 to 60 % Bayer hydrotalcite during the neutralisation process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the past, high order series expansion techniques have been used to study the nonlinear equations that govern the form of periodic Stokes waves moving steadily on the surface of an inviscid fluid. In the present study, two such series solutions are recomputed using exact arithmetic, eliminating any loss of accuracy due to accumulation of round-off error, allowing a much greater number of terms to be found with confidence. It is shown that higher order behaviour of series generated by the solution casts doubt over arguments that rely on estimating the series’ radius of convergence. Further, the exact nature of the series is used to shed light on the unusual nature of convergence of higher order Pade approximants near the highest wave. Finally, it is concluded that, provided exact values are used in the series, these Pade approximants prove very effective in successfully predicting three turning points in both the dispersion relation and the total energy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: The aim of this study was to further evaluate the validity and clinical meaningfulness of appetite sensations to predict overall energy intake as well as body weight loss. METHODS: Men (n=176) and women (n=139) involved in six weight loss studies were selected to participate in this study. Visual analogue scales were used to measure appetite sensations before and after a fixed test meal. Fasting appetite sensations, 1 h post-prandial area under the curve (AUC) and the satiety quotient (SQ) were used as predictors of energy intake and body weight loss. Two separate measures of energy intake were used: a buffet style ad libitum test lunch and a three-day self-report dietary record. RESULTS: One-hour post-prandial AUC for all appetite sensations represented the strongest predictors of ad libitum test lunch energy intake (p0.001). These associations were more consistent and pronounced for women than men. Only SQ for fullness was associated with ad libitum test lunch energy intake in women. Similar but weaker relationships were found between appetite sensations and the 3-day self-reported energy intake. Weight loss was associated with changes in appetite sensations (p0.01) and the best predictors of body weight loss were fasting desire to eat; hunger; and PFC (p0.01). CONCLUSIONS: These results demonstrate that appetite sensations are relatively useful predictors of spontaneous energy intake, free-living total energy intake and body weight loss. They also confirm that SQ for fullness predicts energy intake, at least in women.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An algorithm based on the concept of combining Kalman filter and Least Error Square (LES) techniques is proposed in this paper. The algorithm is intended to estimate signal attributes like amplitude, frequency and phase angle in the online mode. This technique can be used in protection relays, digital AVRs, DGs, DSTATCOMs, FACTS and other power electronics applications. The Kalman filter is modified to operate on a fictitious input signal and provides precise estimation results insensitive to noise and other disturbances. At the same time, the LES system has been arranged to operate in critical transient cases to compensate the delay and inaccuracy identified because of the response of the standard Kalman filter. Practical considerations such as the effect of noise, higher order harmonics, and computational issues of the algorithm are considered and tested in the paper. Several computer simulations and a laboratory test are presented to highlight the usefulness of the proposed method. Simulation results show that the proposed technique can simultaneously estimate the signal attributes, even if it is highly distorted due to the presence of non-linear loads and noise.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Real‐time kinematic (RTK) GPS techniques have been extensively developed for applications including surveying, structural monitoring, and machine automation. Limitations of the existing RTK techniques that hinder their applications for geodynamics purposes are twofold: (1) the achievable RTK accuracy is on the level of a few centimeters and the uncertainty of vertical component is 1.5–2 times worse than those of horizontal components and (2) the RTK position uncertainty grows in proportional to the base‐torover distances. The key limiting factor behind the problems is the significant effect of residual tropospheric errors on the positioning solutions, especially on the highly correlated height component. This paper develops the geometry‐specified troposphere decorrelation strategy to achieve the subcentimeter kinematic positioning accuracy in all three components. The key is to set up a relative zenith tropospheric delay (RZTD) parameter to absorb the residual tropospheric effects and to solve the established model as an ill‐posed problem using the regularization method. In order to compute a reasonable regularization parameter to obtain an optimal regularized solution, the covariance matrix of positional parameters estimated without the RZTD parameter, which is characterized by observation geometry, is used to replace the quadratic matrix of their “true” values. As a result, the regularization parameter is adaptively computed with variation of observation geometry. The experiment results show that new method can efficiently alleviate the model’s ill condition and stabilize the solution from a single data epoch. Compared to the results from the conventional least squares method, the new method can improve the longrange RTK solution precision from several centimeters to the subcentimeter in all components. More significantly, the precision of the height component is even higher. Several geosciences applications that require subcentimeter real‐time solutions can largely benefit from the proposed approach, such as monitoring of earthquakes and large dams in real‐time, high‐precision GPS leveling and refinement of the vertical datum. In addition, the high‐resolution RZTD solutions can contribute to effective recovery of tropospheric slant path delays in order to establish a 4‐D troposphere tomography.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The success rate of carrier phase ambiguity resolution (AR) is the probability that the ambiguities are successfully fixed to their correct integer values. In existing works, an exact success rate formula for integer bootstrapping estimator has been used as a sharp lower bound for the integer least squares (ILS) success rate. Rigorous computation of success rate for the more general ILS solutions has been considered difficult, because of complexity of the ILS ambiguity pull-in region and computational load of the integration of the multivariate probability density function. Contributions of this work are twofold. First, the pull-in region mathematically expressed as the vertices of a polyhedron is represented by a multi-dimensional grid, at which the cumulative probability can be integrated with the multivariate normal cumulative density function (mvncdf) available in Matlab. The bivariate case is studied where the pull-region is usually defined as a hexagon and the probability is easily obtained using mvncdf at all the grid points within the convex polygon. Second, the paper compares the computed integer rounding and integer bootstrapping success rates, lower and upper bounds of the ILS success rates to the actual ILS AR success rates obtained from a 24 h GPS data set for a 21 km baseline. The results demonstrate that the upper bound probability of the ILS AR probability given in the existing literatures agrees with the actual ILS success rate well, although the success rate computed with integer bootstrapping method is a quite sharp approximation to the actual ILS success rate. The results also show that variations or uncertainty of the unit–weight variance estimates from epoch to epoch will affect the computed success rates from different methods significantly, thus deserving more attentions in order to obtain useful success probability predictions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During 1999 the Department of Industry, Science and Resources (ISR) published 4 research reports it had commissioned from the Australian Expert Group in Industry Studies (AEGIS), a research centre of the University of Western Sydney, Macarthur. ISR will shortly publish the fifth and final report in this series. The five reports were commissioned by the Department, as part of the Building and Construction Action Agenda process, to investigate the dynamics and performance of the sector, particularly in relation its innovative capacity. Professor Jane Marceau, PVCR at the University of Western Sydney and Director of AEGIS, led the research team. Dr Karen Manley was the researcher and joint author on three of the five reports. This paper outlines the approach and key findings of each of the five reports. The reports examined 5 key elements of the ‘building and construction product system’. The term ‘product system’ reflects the very broad range of industries and players we consider to contribute to the performance of the building and construction industries. The term ‘product system’ also highlights our focus on the systemic qualities of the building and construction industries. We were most interested in the inter-relationships between key segments and players and how these impacted on the innovation potential of the product system. The ‘building and construction product system’ is hereafter referred to as ‘the industry’ for ease of presentation. All the reports are based, at least in part, on an interviewing or survey research phase which involved gathering data from public and private sector players nationally. The first report ‘maps’ the industry to identify and describe its key elements and the inter-relationships between them. The second report focuses specifically on the linkages between public-sector research organisations and firms in the industry. The third report examines the conditions surrounding the emergence of new businesses in the industry. The fourth report examines how manufacturing businesses are responding to customer demands for ‘total solutions’ to their building and construction needs, by providing various services to clients. The fifth report investigates the capacity of the industry to encourage and undertake energy efficient building design and construction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Analytical and closed form solutions are presented in this paper for the vibration response of an L-shaped plate under a point force or a moment excitation. Inter-relationships between wave components of the source and the receiving plates are clearly defined. Explicit expressions are given for the quadratic quantities such as input power, energy flow and kinetic energy distributions of the L-shaped plate. Applications of statistical energy analysis (SEA) formulation in the prediction of the vibration response of finite coupled plate structures under a single deterministic forcing are examined and quantified. It is found that the SEA method can be employed to predict the frequency averaged vibration response and energy flow of coupled plate structures under a deterministic force or moment excitation when the structural system satisfies the following conditions: (1) the coupling loss factors of the coupled subsystems are known; (2) the source location is more than a quarter of the plate bending wavelength away from the source plate edges in the point force excitation case, or is more than a quarter wavelength away from the pair of source plate edges perpendicular to the moment axis in the moment excitation case due to the directional characteristic of moment excitations. SEA overestimates the response of the L-shaped plate when the source location is less than a quarter bending wavelength away from the respective plate edges owing to wave coherence effect at the plate boundary

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years, development of Unmanned Aerial Vehicles (UAV) has become a significant growing segment of the global aviation industry. These vehicles are developed with the intention of operating in regions where the presence of onboard human pilots is either too risky or unnecessary. Their popularity with both the military and civilian sectors have seen the use of UAVs in a diverse range of applications, from reconnaissance and surveillance tasks for the military, to civilian uses such as aid relief and monitoring tasks. Efficient energy utilisation on an UAV is essential to its functioning, often to achieve the operational goals of range, endurance and other specific mission requirements. Due to the limitations of the space available and the mass budget on the UAV, it is often a delicate balance between the onboard energy available (i.e. fuel) and achieving the operational goals. This thesis presents an investigation of methods for increasing the energy efficiency on UAVs. One method is via the development of a Mission Waypoint Optimisation (MWO) procedure for a small fixed-wing UAV, focusing on improving the onboard fuel economy. MWO deals with a pre-specified set of waypoints by modifying the given waypoints within certain limits to achieve its optimisation objectives of minimising/maximising specific parameters. A simulation model of a UAV was developed in the MATLAB Simulink environment, utilising the AeroSim Blockset and the in-built Aerosonde UAV block and its parameters. This simulation model was separately integrated with a multi-objective Evolutionary Algorithm (MOEA) optimiser and a Sequential Quadratic Programming (SQP) solver to perform single-objective and multi-objective optimisation procedures of a set of real-world waypoints in order to minimise the onboard fuel consumption. The results of both procedures show potential in reducing fuel consumption on a UAV in a ight mission. Additionally, a parallel Hybrid-Electric Propulsion System (HEPS) on a small fixedwing UAV incorporating an Ideal Operating Line (IOL) control strategy was developed. An IOL analysis of an Aerosonde engine was performed, and the most efficient (i.e. provides greatest torque output at the least fuel consumption) points of operation for this engine was determined. Simulation models of the components in a HEPS were designed and constructed in the MATLAB Simulink environment. It was demonstrated through simulation that an UAV with the current HEPS configuration was capable of achieving a fuel saving of 6.5%, compared to the ICE-only configuration. These components form the basis for the development of a complete simulation model of a Hybrid-Electric UAV (HEUAV).