82 resultados para INNATE IMMUNE-SYSTEM
em Queensland University of Technology - ePrints Archive
Resumo:
The recognition of carbohydrate moieties by cells of the innate immune system is emerging as an essential element in antifungal immunity, but despite the number and diversity of lectins expressed by innate immune cells, few carbohydrate receptors have been characterized. Mincle, a C-type lectin, is expressed predominantly on macrophages, and is here shown to play a role in macrophage responses to the yeast Candida albicans. After exposure to the yeast in vitro, Mincle localized to the phagocytic cup, but it was not essential for phagocytosis. In the absence of Mincle, production of TNF-_ by macrophages was reduced, both in vivo and in vitro. In addition, mice lacking Mincle showed a significantly increased susceptibility to systemic candidiasis. Thus, Mincle plays a novel and nonredundant role in the induction of inflammatory signaling in response to C. albicans infection.
Resumo:
The trafficking of molecules and membranes within cells is a prerequisite for all aspects of cellular immune functions, including the delivery and recycling of cell surface proteins, secretion of immune mediators, ingestion of pathogens and activation of lymphocytes. SNARE (soluble-N-ethylmaleimide-sensitive-factor accessory-protein receptor)-family members mediate membrane fusion during all steps of trafficking, and function in almost all aspects of innate and adaptive immune responses. Here, we provide an overview of the roles of SNAREs in immune cells, offering insight into one level at which precision and tight regulation are instilled on immune responses.
Resumo:
The immune system plays an important role in defending the body against tumours and other threats. Currently, mechanisms involved in immune system interactions with tumour cells are not fully understood. Here we develop a mathematical tool that can be used in aiding to address this shortfall in understanding. This paper de- scribes a hybrid cellular automata model of the interaction between a growing tumour and cells of the innate and specific immune system including the effects of chemokines that builds on previous models of tumour-immune system interactions. In particular, the model is focused on the response of immune cells to tumour cells and how the dynamics of the tumour cells change due to the immune system of the host. We present results and predictions of in silico experiments including simulations of Kaplan-Meier survival-like curves.
Resumo:
This review examines the multiple levels of pre-existing immunity in the upper and lower female reproductive tract. In addition, we highlight the need for further research of innate and adaptive immune protection of mucosal surfaces in the female reproductive tract. Innate mechanisms include the mucus lining, a tight epithelial barrier and the secretion of antimicrobial peptides and cytokines by epithelial and innate immune cells. Stimulation of the innate immune system also serves to bridge the adaptive arm resulting in the generation of pathogen-specific humoral and cell-mediated immunity. Less understood are the multiple components that act in a coordinated way to provide a network of ongoing protection. Innate and adaptive immunity in the human female reproductive tract are influenced by the stage of menstrual cycle and are directly regulated by the sex steroid hormones, progesterone and estradiol. Furthermore, the effect of hormones on immunity is mediated both directly on immune and epithelial cells and indirectly by stimulating growth factor secretion from stromal cells. The goal of this review is to focus on the diverse aspects of the innate and adaptive immune systems that contribute to a unique network of protection throughout the female reproductive tract.
Resumo:
Problem: Innate immune activation of human cells, for some intracellular pathogens, is advantageous for vacuole morphology and pathogenic viability. It is unknown whether innate immune activation is advantageous to Chlamydia trachomatis viability. ----- ----- Method of study: Innate immune activation of HEp-2 cells during Chlamydia infection was conducted using lipopolysaccharide (LPS), polyI:C, and wedelolactone (innate immune inhibitor) to investigate the impact of these conditions on viability of Chlamydia. ----- ----- Results: The addition of LPS and polyI:C to stimulate activation of the two distinct innate immune pathways (nuclear factor kappa beta and interferon regulatory factor) had no impact on the viability of Chlamydia. However, when compounds targeting either pathway were added in combination with the specific innate immune inhibitor (wedelolactone) a major impact on Chlamydia viability was observed. This impact was found to be due to the induction of apoptosis of the HEp-2 cells under these conditions. ----- ----- Conclusion: This is the first time that induction of apoptosis has been reported in C. trachomatis-infected cells when treated with a combination of innate immune activators and wedelolactone.
Resumo:
Interleukin(IL)-18 is a pleiotrophic cytokine with functions in immune modulation, angiogenesis and bone metabolism. In this study, the potential of IL-18 as an immunotherapy for prostate cancer (PCa) was examined using the murine model of prostate carcinoma, RM1 and a bone metastatic variant RM1(BM)/B4H7-luc. RM1 and RM1(BM)/B4H7-luc cells were stably transfected to express bioactive IL-18. These cells were implanted into syngeneic immunocompetent mice, with or without an IL-18-neutralising antibody (αIL-18, SK113AE4). IL-18 significantly inhibited the growth of both subcutaneous and orthotopic RM1 tumors and the IL-18 neutralizing antibody abrogated the tumor growth-inhibition. In vivo neutralization of interferon-gamma (IFN-γ) completely eliminated the anti-tumor effects of IL-18 confirming an essential role of IFN-γ as a down-stream mediator of the anti-tumor activity of IL-18. Tumors from mice in which IL-18 and/or IFN-γ was neutralized contained significantly fewer CD4+ and CD8+ T cells than those with functional IL-18. The essential role of adaptive immunity was demonstrated as tumors grew more rapidly in RAG1−/− mice or in mice depleted of CD4+ and/or CD8+ cells than in normal mice. The tumors in RAG1−/− mice were also significantly smaller when IL-18 was present, indicating that innate immune mechanisms are involved. IL-18 also induced an increase in tumor infiltration of macrophages and neutrophils but not NK cells. In other experiments, direct injection of recombinant IL-18 into established tumors also inhibited tumor growth, which was associated with an increase in intratumoral macrophages, but not T cells. These results suggest that local IL-18 in the tumor environment can significantly potentiate anti-tumor immunity in the prostate and clearly demonstrate that this effect is mediated by innate and adaptive immune mechanisms.
Resumo:
Alterations in innate immunity that predispose to chronic obstructive pulmonary disease (COPD) exacerbations are poorly understood. We examined innate immunity gene expression in peripheral blood polymorphonuclear leukocytes (PMN) and monocytes stimulated by Haemophilus influenzae and Streptococcus pneumoniae. Thirty COPD patients (15 rapid and 15 non-rapid lung function decliners) and 15 smokers without COPD were studied. Protein expression of IL-8, IL-6, TNF-α and IFN-γ (especially monocytes) increased with bacterial challenge. In monocytes stimulated with S. pneumoniae, TNF-α protein expression was higher in COPD (non-rapid decliners) than in smokers. In co-cultures of monocytes and PMN, mRNA expression of TGF-β1 and MYD88 was up-regulated, and CD14, TLR2 and IFN-γ down-regulated with H. influenzae challenge. TNF-α mRNA expression was increased with H. influenzae challenge in COPD. Cytokine responses were similar between rapid and non-rapid decliners. TNF-α expression was up-regulated in non-rapid decliners in response to H. influenzae (monocytes) and S. pneumoniae (co-culture of monocytes and PMN). Exposure to bacterial pathogens causes characteristic innate immune responses in peripheral blood monocytes and PMN in COPD. Bacterial exposure significantly alters the expression of TNF-α in COPD patients, although not consistently. There did not appear to be major differences in innate immune responses between rapid and non-rapid decliners.
Resumo:
In this thesis, three mathematical models describing the growth of solid tumour incorporating the host tissue and the immune system response are developed and investigated. The initial model describes the dynamics of the growing tumour and immune response before being extended in the second model by introducing a time-varying dendritic cell-based treatment strategy. Finally, in the third model, we present a mathematical model of a growing tumour using a hybrid cellular automata. These models can provide information to pre-experimental work to assist in designing more effective and efficient laboratory experiments related to tumour growth and interactions with the immune system and immunotherapy.
Resumo:
A finely-tuned innate immune response plays a pivotal role in protecting host against bacterial invasion during periodontal disease progression. Hyperlipidemia has been suggested to exacerbate periodontal health condition. However, the underlying mechanism has not been addressed. In the present study, we investigated the effect of hyperlipidemia on innate immune responses to periodontal pathogen Porphyromonas gingivalis infection. Apolipoprotein E-deficient and wild-type mice at the age of 20 weeks were used for the study. Peritoneal macrophages were isolated and subsequently used for the study of viable P. gingivalis infection. ApoE−/− mice demonstrated inhibited iNOS production and impaired clearance of P. gingivalis in vitro and in vivo; furthermore, ApoE−/− mice displayed disrupted cytokine production pattern in response to P. gingivalis, with a decreased production of tumor necrosis factor-α, interleukin-6 (IL-6), IL-1β and monocyte chemotactic protein-1. Microarray data demonstrated that Toll-like receptor (TLR) and NOD-like receptor (NLR) pathway were altered in ApoE−/− mice macrophages; further analysis of pattern recognition receptors (PRRs) demonstrated that expression of triggering receptors on myeloid cells-1 (TREM-1), an amplifier of the TLR and NLR pathway, was decreased in ApoE−/− mice macrophages, leading to decreased recruitment of NF-κB onto the promoters of the TNF-α and IL-6. Our data suggest that in ApoE−/− mice hyperlipidemia disrupts the expression of PRRs, and cripples the host’s capability to generate sufficient innate immune response to P. gingivalis, which may facilitate immune evasion, subgingival colonization and establishment of P. gingivalis in the periodontal niche.
Resumo:
Problem Susceptibility to Chlamydia trachomatis infection is increased by oral con- traceptives and modulated by sex hormones. We therefore sought to determine the effects of female sex hormones on the innate immune response to C. trachomatis infection. Method of study ECC-1 endometrial cells, pre-treated with oestradiol or progesterone, were infected with C. trachomatis and the host transcriptome analysed by Illumina Sentrix HumanRef-8 microarray. Primary endocervical epithe- lial cells, prepared at either the proliferative or secretory phase of the menstrual cycle, were infected with C. trachomatis and cytokine gene expression determined by quantitative RT-PCR analysis. Results Chlamydia trachomatis yield from progesterone-primed ECC-1 cells was significantly reduced compared with oestradiol-treated cells. Genes upregulated in progesterone-treated and Chlamydia-infected cells only included multiple CC and CXC chemokines, IL-17C, IL-29, IL-32, TNF-a, DEFB4B, LCN2, S100A7-9, ITGAM, NOD2, JAK1, IL-6ST, type I and II interferon receptors, numerous interferon-stimulated genes and STAT6. CXCL10, CXCL11, CX3CL1 and IL-17C, which were also upregu- lated in infected secretory-stage primary cells, and there was a trend towards higher levels of immune mediators in infected secretory-phase compared with proliferative-phase cells. Conclusion Progesterone treatment primes multiple innate immune pathways in hormone-responsive epithelial cells that could potentially increase resis- tance to chlamydial infection.
Resumo:
Hand, Foot and Mouth Disease (HFMD) is a self-limiting viral disease that mainly affects infants and children. In contrast with other HFMD causing enteroviruses, Enterovirus71 (EV71) has commonly been associated with severe clinical manifestation leading to death. Currently, due to a lack in understanding of EV71 pathogenesis, there is no antiviral therapeutics for the treatment of HFMD patients. Therefore the need to better understand the mechanism of EV71 pathogenesis is warranted. We have previously reported a human colorectal adenocarcinoma cell line (HT29) based model to study the pathogenesis of EV71. Using this system, we showed that knockdown of DGCR8, an essential cofactor for microRNAs biogenesis resulted in a reduction of EV71 replication. We also demonstrated that there are miRNAs changes during EV71 pathogenesis and EV71 utilise host miRNAs to attenuate antiviral pathways during infection. Together, data from this study provide critical information on the role of miRNAs during EV71 infection.