42 resultados para HIGH REFRACTIVE-INDEX
em Queensland University of Technology - ePrints Archive
Resumo:
The human lens comprises two distinct regions in which the refractive index changes at different rates. The periphery contains a rapidly increasing refractive index gradient, which becomes steeper with age. The inner region contains a shallow gradient, which flattens with age, due to formation of a central plateau, of RI = 1.418, which reaches a maximum size of 7.0 × 3.05 mm around age 60 years. Formation of the plateau can be attributed to compression of fibre cells generated in prenatal life. Present in prenatal but not in postnatal fibre cells, γ-crystallin may play a role in limiting nuclear cell compression.
Resumo:
Transient hyperopic refractive shifts occur on a timescale of weeks in some patients after initiation of therapy for hyperglycemia, and are usually followed by recovery to the original refraction. Possible lenticular origin of these changes is considered in terms of a paraxial gradient index model. Assuming that the lens thickness and curvatures remain unchanged, as observed in practice, it appears possible to account for initial hyperopic refractive shifts of up to a few diopters by reduction in refractive index near the lens center and alteration in the rate of change between center and surface, so that most of the index change occurs closer to the lens surface. Restoration of the original refraction depends on further change in the refractive index distribution with more gradual changes in refractive index from the lens center to its surface. Modeling limitations are discussed.
Resumo:
We present a method for optical encryption of information, based on the time-dependent dynamics of writing and erasure of refractive index changes in a bulk lithium niobate medium. Information is written into the photorefractive crystal with a spatially amplitude modulated laser beam which when overexposed significantly degrades the stored data making it unrecognizable. We show that the degradation can be reversed and that a one-to-one relationship exists between the degradation and recovery rates. It is shown that this simple relationship can be used to determine the erasure time required for decrypting the scrambled index patterns. In addition, this method could be used as a straightforward general technique for determining characteristic writing and erasure rates in photorefractive media.
Resumo:
Purpose: To compare lens dimensions and refractive index distributions in type 1 diabetes and age-matched control groups. Methods: There were 17 participants with type 1 diabetes, consisting of two subgroups (7 young [23 ± 4 years] and 10 older [54 ± 4 years] participants), with 23 controls (13 young, 24 ± 4 years; 10 older, 55 ± 4 years). For each participant, one eye was tested with relaxed accommodation. A 3T clinical magnetic resonance imaging scanner was used to image the eye, employing a multiple spin echo (MSE) sequence to determine lens dimensions and refractive index profiles along the equatorial and axial directions. Results: The diabetes group had significantly smaller lens equatorial diameters and larger lens axial thicknesses than the control group (diameter mean ± 95% confidence interval [CI]: diabetes group 8.65 ± 0.26 mm, control group 9.42 ± 0.18 mm; axial thickness: diabetes group 4.33 ± 0.30 mm, control group 3.80 ± 0.14 mm). These differences were also significant within each age group. The older group had significantly greater axial thickness than the young group (older group 4.35 ± 0.26 mm, young group 3.70 ± 0.25 mm). Center refractive indices of diabetes and control groups were not significantly different. There were some statistically significant differences between the refractive index fitting parameters of young and older groups, but not between diabetes and control groups of the same age. Conclusions: Smaller lens diameters occurred in the diabetes groups than in the age-matched control groups. Differences in refractive index distribution between persons with and without diabetes are too small to have important effects on instruments measuring axial thickness.
Resumo:
Non-invasive measurements of the age dependence of refractive index distribution in human eye lenses in vitro using a novel X-ray Talbot Interferometry method. In their paper, the authors make frequent reference to our own work in which we employed magnetic resonance imaging (MRI) to make similar non-invasive measurements of the refractive index distribution in the human eye lens [2, 3]. Prior to the current work, ours was the only method for making such measurements both non-invasively and without prior assumptions about the shape of the refractive index distribution. For this reason, the latest work is to be welcomed. However at several points in the paper, Pierscionek et al. [1] make statements about our technique which are factually incorrect...
Resumo:
This work is motivated by the need to efficiently machine the edges of ophthalmic polymer lenses for mounting in spectacle or instrument frames. The polymer materials used are required to have suitable optical characteristics such high refractive index and Abbe number, combined with low density and high scratch and impact resistance. Edge surface finish is an important aesthetic consideration; its quality is governed by the material removal operation and the physical properties of the material being processed. The wear behaviour of polymer materials is not as straightforward as for other materials due to their molecular and structural complexity, not to mention their time-dependent properties. Four commercial ophthalmic polymers have been studied in this work using nanoindentation techniques which are evaluated as tools for probing surface mechanical properties in order to better understand the grinding response of polymer materials.
Resumo:
This work is motivated by the need to efficiently machine the edges of ophthalmic polymer lenses for mounting in spectacle or instrument frames. The polymer materials used are required to have suitable optical characteristics such high refractive index and Abbe number, combined with low density and high scratch and impact resistance. Edge surface finish is an important aesthetic consideration; its quality is governed by the material removal operation and the physical properties of the material being processed. The wear behaviour of polymer materials is not as straightforward as for other materials due to their molecular and structural complexity, not to mention their time-dependent properties. Four commercial ophthalmic polymers have been studied in this work using nanoindentation techniques which are evaluated as tools for probing surface mechanical properties in order to better understand the grinding response of polymer materials.
Resumo:
The present rate of technological advance continues to place significant demands on data storage devices. The sheer amount of digital data being generated each year along with consumer expectations, fuels these demands. At present, most digital data is stored magnetically, in the form of hard disk drives or on magnetic tape. The increase in areal density (AD) of magnetic hard disk drives over the past 50 years has been of the order of 100 million times, and current devices are storing data at ADs of the order of hundreds of gigabits per square inch. However, it has been known for some time that the progress in this form of data storage is approaching fundamental limits. The main limitation relates to the lower size limit that an individual bit can have for stable storage. Various techniques for overcoming these fundamental limits are currently the focus of considerable research effort. Most attempt to improve current data storage methods, or modify these slightly for higher density storage. Alternatively, three dimensional optical data storage is a promising field for the information storage needs of the future, offering very high density, high speed memory. There are two ways in which data may be recorded in a three dimensional optical medium; either bit-by-bit (similar in principle to an optical disc medium such as CD or DVD) or by using pages of bit data. Bit-by-bit techniques for three dimensional storage offer high density but are inherently slow due to the serial nature of data access. Page-based techniques, where a two-dimensional page of data bits is written in one write operation, can offer significantly higher data rates, due to their parallel nature. Holographic Data Storage (HDS) is one such page-oriented optical memory technique. This field of research has been active for several decades, but with few commercial products presently available. Another page-oriented optical memory technique involves recording pages of data as phase masks in a photorefractive medium. A photorefractive material is one by which the refractive index can be modified by light of the appropriate wavelength and intensity, and this property can be used to store information in these materials. In phase mask storage, two dimensional pages of data are recorded into a photorefractive crystal, as refractive index changes in the medium. A low-intensity readout beam propagating through the medium will have its intensity profile modified by these refractive index changes and a CCD camera can be used to monitor the readout beam, and thus read the stored data. The main aim of this research was to investigate data storage using phase masks in the photorefractive crystal, lithium niobate (LiNbO3). Firstly the experimental methods for storing the two dimensional pages of data (a set of vertical stripes of varying lengths) in the medium are presented. The laser beam used for writing, whose intensity profile is modified by an amplitudemask which contains a pattern of the information to be stored, illuminates the lithium niobate crystal and the photorefractive effect causes the patterns to be stored as refractive index changes in the medium. These patterns are read out non-destructively using a low intensity probe beam and a CCD camera. A common complication of information storage in photorefractive crystals is the issue of destructive readout. This is a problem particularly for holographic data storage, where the readout beam should be at the same wavelength as the beam used for writing. Since the charge carriers in the medium are still sensitive to the read light field, the readout beam erases the stored information. A method to avoid this is by using thermal fixing. Here the photorefractive medium is heated to temperatures above 150�C; this process forms an ionic grating in the medium. This ionic grating is insensitive to the readout beam and therefore the information is not erased during readout. A non-contact method for determining temperature change in a lithium niobate crystal is presented in this thesis. The temperature-dependent birefringent properties of the medium cause intensity oscillations to be observed for a beam propagating through the medium during a change in temperature. It is shown that each oscillation corresponds to a particular temperature change, and by counting the number of oscillations observed, the temperature change of the medium can be deduced. The presented technique for measuring temperature change could easily be applied to a situation where thermal fixing of data in a photorefractive medium is required. Furthermore, by using an expanded beam and monitoring the intensity oscillations over a wide region, it is shown that the temperature in various locations of the crystal can be monitored simultaneously. This technique could be used to deduce temperature gradients in the medium. It is shown that the three dimensional nature of the recording medium causes interesting degradation effects to occur when the patterns are written for a longer-than-optimal time. This degradation results in the splitting of the vertical stripes in the data pattern, and for long writing exposure times this process can result in the complete deterioration of the information in the medium. It is shown in that simply by using incoherent illumination, the original pattern can be recovered from the degraded state. The reason for the recovery is that the refractive index changes causing the degradation are of a smaller magnitude since they are induced by the write field components scattered from the written structures. During incoherent erasure, the lower magnitude refractive index changes are neutralised first, allowing the original pattern to be recovered. The degradation process is shown to be reversed during the recovery process, and a simple relationship is found relating the time at which particular features appear during degradation and recovery. A further outcome of this work is that the minimum stripe width of 30 ìm is required for accurate storage and recovery of the information in the medium, any size smaller than this results in incomplete recovery. The degradation and recovery process could be applied to an application in image scrambling or cryptography for optical information storage. A two dimensional numerical model based on the finite-difference beam propagation method (FD-BPM) is presented and used to gain insight into the pattern storage process. The model shows that the degradation of the patterns is due to the complicated path taken by the write beam as it propagates through the crystal, and in particular the scattering of this beam from the induced refractive index structures in the medium. The model indicates that the highest quality pattern storage would be achieved with a thin 0.5 mm medium; however this type of medium would also remove the degradation property of the patterns and the subsequent recovery process. To overcome the simplistic treatment of the refractive index change in the FD-BPM model, a fully three dimensional photorefractive model developed by Devaux is presented. This model shows significant insight into the pattern storage, particularly for the degradation and recovery process, and confirms the theory that the recovery of the degraded patterns is possible since the refractive index changes responsible for the degradation are of a smaller magnitude. Finally, detailed analysis of the pattern formation and degradation dynamics for periodic patterns of various periodicities is presented. It is shown that stripe widths in the write beam of greater than 150 ìm result in the formation of different types of refractive index changes, compared with the stripes of smaller widths. As a result, it is shown that the pattern storage method discussed in this thesis has an upper feature size limit of 150 ìm, for accurate and reliable pattern storage.
Resumo:
Many optical networks are limited in speed and processing capability due to the necessity for the optical signal to be converted to an electrical signal and back again. In addition, electronically manipulated interconnects in an otherwise optical network lead to overly complicated systems. Optical spatial solitons are optical beams that propagate without spatial divergence. They are capable of phase dependent interactions, and have therefore been extensively researched as suitable all optical interconnects for over 20 years. However, they require additional external components, initially high voltage power sources were required, several years later, high power background illumination had replaced the high voltage. However, these additional components have always remained as the greatest hurdle in realising the applications of the interactions of spatial optical solitons as all optical interconnects. Recently however, self-focusing was observed in an otherwise self-defocusing photorefractive crystal. This observation raises the possibility of the formation of soliton-like fields in unbiased self-defocusing media, without the need for an applied electrical field or background illumination. This thesis will present an examination of the possibility of the formation of soliton-like low divergence fields in unbiased self-defocusing photorefractive media. The optimal incident beam and photorefractive media parameters for the formation of these fields will be presented, together with an analytical and numerical study of the effect of these parameters. In addition, preliminary examination of the interactions of two of these fields will be presented. In order to complete an analytical examination of the field propagating through the photorefractive medium, the spatial profile of the beam after propagation through the medium was determined. For a low power solution, it was found that an incident Gaussian field maintains its Gaussian profile as it propagates. This allowed the beam at all times to be described by an individual complex beam parameter, while also allowing simple analytical solutions to the appropriate wave equation. An analytical model was developed to describe the effect of the photorefractive medium on the Gaussian beam. Using this model, expressions for the required intensity dependent change in both the real and imaginary components of the refractive index were found. Numerical investigation showed that under certain conditions, a low powered Gaussian field could propagate in self-defocusing photorefractive media with divergence of approximately 0.1 % per metre. An investigation into the parameters of a Ce:BaTiO3 crystal showed that the intensity dependent absorption is wavelength dependent, and can in fact transition to intensity dependent transparency. Thus, with careful wavelength selection, the required intensity dependent change in both the real and imaginary components of the refractive index for the formation of a low divergence Gaussian field are physically realisable. A theoretical model incorporating the dependence of the change in real and imaginary components of the refractive index on propagation distance was developed. Analytical and numerical results from this model are congruent with the results from the previous model, showing low divergence fields with divergence less than 0.003 % over the propagation length of the photorefractive medium. In addition, this approach also confirmed the previously mentioned self-focusing effect of the self-defocusing media, and provided an analogy to a negative index GRIN lens with an intensity dependent focal length. Experimental results supported the findings of the numerical analysis. Two low divergence fields were found to possess the ability to interact in a Ce:BaTiO3 crystal in a soliton-like fashion. The strength of these interactions was found to be dependent on the degree of divergence of the individual beams. This research found that low-divergence fields are possible in unbiased self-defocusing photorefractive media, and that soliton-like interactions between two of these fields are possible. However, in order for these types of fields to be used in future all optical interconnects, the manipulation of these interactions, together with the ability for these fields to guide a second beam at a different wavelength, must be investigated.
Resumo:
Purpose: James Clerk Maxwell is usually recognized as being the first, in 1854, to consider using inhomogeneous media in optical systems. However, some fifty years earlier Thomas Young, stimulated by his interest in the optics of the eye and accommodation, had already modeled some applications of gradient-index optics. These applications included using an axial gradient to provide spherical aberration-free optics and a spherical gradient to describe the optics of the atmosphere and the eye lens. We evaluated Young’s contributions. Method: We attempted to derive Young’s equations for axial and spherical refractive index gradients. Raytracing was used to confirm accuracy of formula. Results: We did not confirm Young’s equation for the axial gradient to provide aberration-free optics, but derived a slightly different equation. We confirmed the correctness of his equations for deviation of rays in a spherical gradient index and for the focal length of a lens with a nucleus of fixed index surrounded by a cortex of reducing index towards the edge. Young claimed that the equation for focal length applied to a lens with part of the constant index nucleus of the sphere removed, such that the loss of focal length was a quarter of the thickness removed, but this is not strictly correct. Conclusion: Young’s theoretical work in gradient-index optics received no acknowledgement from either his contemporaries or later authors. While his model of the eye lens is not an accurate physiological description of the human lens, with the index reducing least quickly at the edge, it represented a bold attempt to approximate the characteristics of the lens. Thomas Young’s work deserves wider recognition.
Resumo:
Lens average and equivalent refractive indices are required for purposes such as lens thickness estimation and optical modeling. We modeled the refractive index gradient as a power function of the normalized distance from lens center. Average index along the lens axis was estimated by integration. Equivalent index was estimated by raytracing through a model eye to establish ocular refraction, and then backward raytracing to determine the constant refractive index yielding the same refraction. Assuming center and edge indices remained constant with age, at 1.415 and 1.37 respectively, average axial refractive index increased (1.408 to 1.411) and equivalent index decreased (1.425 to 1.420) with age increase from 20 to 70 years. These values agree well with experimental estimates based on different techniques, although the latter show considerable scatter. The simple model of index gradient gives reasonable estimates of average and equivalent lens indices, although refinements in modeling and measurements are required.
Resumo:
In this work, we report a plasma-based synthesis of nanodevice-grade nc-3C-SiC films, with very high growth rates (7-9 nm min-1) at low and ULSI technology-compatible process temperatures (400-550 °C), featuring: (i) high nanocrystalline fraction (67% at 550 °C); (ii) good chemical purity; (iii) excellent stoichiometry throughout the entire film; (iv) wide optical band gap (3.22-3.71 eV); (v) refractive index close to that of single-crystalline 3C-SiC, and; (vi) clear, uniform, and defect-free Si-SiC interface. The counter-intuitive low SiC hydrogenation in a H2-rich plasma process is explained by hydrogen atom desorption-mediated crystallization.
Resumo:
Purpose: To estimate refractive indices used with the Lenstar biometer. Methods: Axial lengths of model eyes were determined using an IOLMaster biometer and a Lenstar; comparing these lengths gave an overall eye index for the Lenstar. Using the Lenstar Graphical User interface, we determined that boundaries between media could be manipulated so that there were opposite changes in optical pathlength on either side of the boundary and specified changes in distances determined the ratios of media indices. These ratios were combined with the overall eye index to estimate indices. Results: The IOLMaster and Lenstar produced axial length estimates to within ±0.01 mm. Estimations of group refractive indices were 1.340, 1.341, 1.415 and 1.354 for cornea, aqueous, lens and overall eye, respectively. The aqueous and lens indices, but not those for the cornea, are similar to schematic eye indices and reasonable lens indices. Conclusion: The Lenstar appears to use different refractive indices for different ocular media.