504 resultados para Exercise - Physiological aspects
em Queensland University of Technology - ePrints Archive
Resumo:
The collective purpose of these two studies was to determine a link between the V02 slow component and the muscle activation patterns that occur during cycling. Six, male subjects performed an incremental cycle ergometer exercise test to determine asub-TvENT (i.e. 80% of TvENT) and supra-TvENT (TvENT + 0.75*(V02 max - TvENT) work load. These two constant work loads were subsequently performed on either three or four occasions for 8 mins each, with V02 captured on a breath-by-breath basis for every test, and EMO of eight major leg muscles collected on one occasion. EMG was collected for the first 10 s of every 30 s period, except for the very first 10 s period. The V02 data was interpolated, time aligned, averaged and smoothed for both intensities. Three models were then fitted to the V02 data to determine the kinetics responses. One of these models was mono-exponential, while the other two were biexponential. A second time delay parameter was the only difference between the two bi-exponential models. An F-test was used to determine significance between the biexponential models using the residual sum of squares term for each model. EMO was integrated to obtain one value for each 10 s period, per muscle. The EMG data was analysed by a two-way repeated measures ANOV A. A correlation was also used to determine significance between V02 and IEMG. The V02 data during the sub-TvENT intensity was best described by a mono-exponential response. In contrast, during supra-TvENT exercise the two bi-exponential models best described the V02 data. The resultant F-test revealed no significant difference between the two models and therefore demonstrated that the slow component was not delayed relative to the onset of the primary component. Furthermore, only two parameters were deemed to be significantly different based upon the two models. This is in contrast to other findings. The EMG data, for most muscles, appeared to follow the same pattern as V02 during both intensities of exercise. On most occasions, the correlation coefficient demonstrated significance. Although some muscles demonstrated the same relative increase in IEMO based upon increases in intensity and duration, it cannot be assumed that these muscles increase their contribution to V02 in a similar fashion. Larger muscles with a higher percentage of type II muscle fibres would have a larger increase in V02 over the same increase in intensity.
Resumo:
Non-motorised underwater treadmills are commonly used in fitness activities. However, no studies have examined physiological and biomechanical responses of walking on non-motorised treadmills at different intensities and depths. Fifteen middle-aged healthy women underwent two underwater walking tests at two different depths, immersed either up to the xiphoid process (deep water) or the iliac crest (shallow water), at 100, 110, 120, 130 step-per-minute (spm). Oxygen consumption (VO2), heart rate (HR), blood lactate concentration, perceived exertion and step length were determined. Compared to deep water, walking in shallow water exhibited, at all intensities, significantly higher VO2 (+13.5%, on average) and HR (+8.1%, on average) responses. Water depth did not influence lactate concentration, whereas perceived exertion was higher in shallow compared to deep water, solely at 120 (+40%) and 130 (+39.4%) spm. Average step length was reduced as the intensity increased (from 100 to 130 spm), irrespective of water depth. Expressed as a percentage of maximum, average VO2 and HR were: 64–76% of peak VO2 and 71–90% of maximum HR, respectively at both water depths. Accordingly, this form of exercise can be included in the “vigorous” range of exercise intensity, at any of the step frequencies used in this study.
Resumo:
Resistance exercise triggers a subclinical inflammatory response that plays a pivotal role in skeletal muscle regeneration. Nuclear factor‐κB (NF‐κB) is a stress signalling transcription factor that regulates acute and chronic states of inflammation. The classical NF‐κB pathway regulates the early activation of post‐exercise inflammation; however there remains scope for this complex transcription factor to play a more detailed role in post‐exercise muscle recovery. Sixteen volunteers completed a bout of lower body resistance exercise with the ingestion of three 400 mg doses of ibuprofen or a placebo control. Muscle biopsy samples were obtained prior to exercise and at 0, 3 and 24 h post‐exercise and analysed for key markers of NF‐κB activity. Phosphorylated p65 protein expression and p65 inflammatory target genes were elevated immediately post‐exercise independent of the two treatments. These changes did not translate to an increase in p65 DNA binding activity. NF‐κB p50 protein expression and NF‐κB p50 binding activity were lower than pre‐exercise at 0 and 3 h post‐exercise, but were elevated at 24 h post‐exercise. These findings provide novel evidence that two distinct NF‐κB pathways are active in skeletal muscle after resistance exercise. The initial wave of activity involving p65 resembles the classical pathway and is associated with the onset of an acute inflammatory response. The second wave of NF‐κB activity comprises the p50 subunit, which has been previously shown to resolve an acute inflammatory program. The current study showed no effect of the ibuprofen treatment on markers of the NF‐κB pathway, however examination of the within group effects of the exercise protocol suggests that this pathway warrants further research.
Resumo:
The purpose of this study was to verify within- and between-day repeatability and variability in children's oxygen uptake (VO^sub 2^), gross economy (GE; VO^sub 2^ divided by speed) and heart rate (HR) during treadmill walking based on self-selected speed (SS). Fourteen children (10.1 ± 1.4 years) undertook three testing sessions over 2 days in which four walking speeds, including SS were tested. Within- and between-day repeatability were assessed using the Bland and Altman method, and coefficients of variability (CV) were determined for each child across exercise bouts and averaged to obtain a mean group CV value for VO^sub 2^, GE, and HR per speed. Repeated measures analysis of variance showed no statistically significant differences in within- or between-day CV for VO^sub 2^, GE, or HR at any speed. Repeatability within- and between-day for VO^sub 2^, GE, and HR for all speeds was verified. These results suggest that submaximal VO^sub 2^ during treadmill walking is stable and reproducible at a range of speeds based on children's SS.
Resumo:
It has been estimated that 25-50% of people in most affluent societies are either obese or overweight. These disorders are the result of an imbalance between calorific intake and energy expenditure over a prolonged time period. These types of disorders are among the most common health problems in industrialized societies. Addressing these issues and offering new strategies, this thorough new study draws together contributions from interdisciplinary and international group of specialists, includes recent research on genetic influences, features discussions of epidemiological studies and covers both biological and social aspects of obesity.