696 resultados para Engineering, Industrial|Engineering, System Science|Operations Research
em Queensland University of Technology - ePrints Archive
Resumo:
To maximise the capacity of the rail lineand provide a reliable service for pas-sengers throughout the day, regulation of train service to maintain steady service headway is es-sential. In most current metro systems, train usually starts coasting at a fixed distance from the departed station to achieve service regulation. However, this approach is only effective with re-spect to a nominal operational condition of train schedule but not necessarily the current service demand. Moreover, it is not simply to identify the necessary starting point for coasting under the run time constraints of current service conditions since train movement is attributed by a large number of factors, most of which are non-linear and inter-dependent. This paper presents an ap-plication of classical measures to search for the appropriate coasting point to meet a specified inter-station run time and they can be integrated in the on-board Automatic Train Operation (ATO) system and have the potential for on-line implementation in making a set of coasting command decisions.
Resumo:
In this paper, we describe the main processes and operations in mining industries and present a comprehensive survey of operations research methodologies that have been applied over the last several decades. The literature review is classified into four main categories: mine design; mine production; mine transportation; and mine evaluation. Mining design models are further separated according to two main mining methods: open-pit and underground. Moreover, mine production models are subcategorised into two groups: ore mining and coal mining. Mine transportation models are further partitioned in accordance with fleet management, truck haulage and train scheduling. Mine evaluation models are further subdivided into four clusters in terms of mining method selection, quality control, financial risks and environmental protection. The main characteristics of four Australian commercial mining software are addressed and compared. This paper bridges the gaps in the literature and motivates researchers to develop more applicable, realistic and comprehensive operations research models and solution techniques that are directly linked with mining industries.
Resumo:
A practical approach for identifying solution robustness is proposed for situations where parameters are uncertain. The approach is based upon the interpretation of a probability density function (pdf) and the definition of three parameters that describe how significant changes in the performance of a solution are deemed to be. The pdf is constructed by interpreting the results of simulations. A minimum number of simulations are achieved by updating the mean, variance, skewness and kurtosis of the sample using computationally efficient recursive equations. When these criterions have converged then no further simulations are needed. A case study involving several no-intermediate storage flow shop scheduling problems demonstrates the effectiveness of the approach.
Resumo:
This paper presents a maintenance optimisation method for a multi-state series-parallel system considering economic dependence and state-dependent inspection intervals. The objective function considered in the paper is the average revenue per unit time calculated based on the semi-regenerative theory and the universal generating function (UGF). A new algorithm using the stochastic ordering is also developed in this paper to reduce the search space of maintenance strategies and to enhance the efficiency of optimisation algorithms. A numerical simulation is presented in the study to evaluate the efficiency of the proposed maintenance strategy and optimisation algorithms. The simulation result reveals that maintenance strategies with opportunistic maintenance and state-dependent inspection intervals are more cost-effective when the influence of economic dependence and inspection cost is significant. The study further demonstrates that the optimisation algorithm proposed in this paper has higher computational efficiency than the commonly employed heuristic algorithms.
Resumo:
Service research in information systems (IS) has received attention over many years (e.g. Kettinger and Lee, 1994), but more recently has increased substantially in both diversity and volume (Rai and Sambamurthy, 2006). A service-oriented view of information technology (IT) is gradually taking hold in both academia and industry. This is concomitant with the growth of service-related phenomena and concepts (Lusch and Vargo, 2006), stimulating a global discourse about 'service science' as a new, cross-disciplinary field of research (Chesbrough and Spohrer, 2006).
Resumo:
The security of industrial control systems in critical infrastructure is a concern for the Australian government and other nations. There is a need to provide local Australian training and education for both control system engineers and information technology professionals. This paper proposes a postgraduate curriculum of four courses to provide knowledge and skills to protect critical infrastructure industrial control systems. Our curriculum is unique in that it provides security awareness but also the advanced skills required for security specialists in this area. We are aware that in the Australian context there is a cultural gap between the thinking of control system engineers who are responsible for maintaining and designing critical infrastructure and information technology professionals who are responsible for protecting these systems from cyber attacks. Our curriculum aims to bridge this gap by providing theoretical and practical exercises that will raise the awareness and preparedness of both groups of professionals.
Resumo:
This paper proposes a new multi-stage mine production timetabling (MMPT) model to optimise open-pit mine production operations including drilling, blasting and excavating under real-time mining constraints. The MMPT problem is formulated as a mixed integer programming model and can be optimally solved for small-size MMPT instances by IBM ILOG-CPLEX. Due to NP-hardness, an improved shifting-bottleneck-procedure algorithm based on the extended disjunctive graph is developed to solve large-size MMPT instances in an effective and efficient way. Extensive computational experiments are presented to validate the proposed algorithm that is able to efficiently obtain the near-optimal operational timetable of mining equipment units. The advantages are indicated by sensitivity analysis under various real-life scenarios. The proposed MMPT methodology is promising to be implemented as a tool for mining industry because it is straightforwardly modelled as a standard scheduling model, efficiently solved by the heuristic algorithm, and flexibly expanded by adopting additional industrial constraints.
Resumo:
Although the sciences were being taught in Australian schools well before the Second World War, the only evidence of research studies of this teaching is to be found in the report, published by ACER in 1932 of Roy Stanhope’s survey of the teaching of chemistry in New South Wales and a standardized test he had developed. Roy Stanhope was a science teacher with a research masters degree in chemistry. He had won a scholarship to go to Stanford University for doctoral studies, but returned after one year when his scholarship was not extended. He went on to be a founder in 1943 of the Australian Science Teachers Association (ASTA), which honours this remarkable pioneer through its annual Stanhope Oration. In his retirement Stanhope undertook a comparative study of science
Resumo:
This chapter overviews the major themes of research reviewed and justifies the selection of topics.
Resumo:
Open access reforms to railway regulations allow multiple train operators to provide rail services on a common infrastructure. As railway operations are now independently managed by different stakeholders, conflicts in operations may arise, and there have been attempts to derive an effective access charge regime so that these conflicts may be resolved. One approach is by direct negotiation between the infrastructure manager and the train service providers. Despite the substantial literature on the topic, few consider the benefits of employing computer simulation as an evaluation tool for railway operational activities such as access pricing. This article proposes a multi-agent system (MAS) framework for the railway open market and demonstrates its feasibility by modelling the negotiation between an infrastructure provider and a train service operator. Empirical results show that the model is capable of resolving operational conflicts according to market demand.
Resumo:
The railway service is now the major transportation means in most of the countries around the world. With the increasing population and expanding commercial and industrial activities, a high quality of railway service is the most desirable. Train service usually varies with the population activities throughout a day and train coordination and service regulation are then expected to meet the daily passengers' demand. Dwell time control at stations and fixed coasting point in an inter-station run are the current practices to regulate train service in most metro railway systems. However, a flexible and efficient train control and operation is not always possible. To minimize energy consumption of train operation and make certain compromises on the train schedule, coast control is an economical approach to balance run-time and energy consumption in railway operation if time is not an important issue, particularly at off-peak hours. The capability to identify the starting point for coasting according to the current traffic conditions provides the necessary flexibility for train operation. This paper presents an application of genetic algorithms (GA) to search for the appropriate coasting point(s) and investigates the possible improvement on fitness of genes. Single and multiple coasting point control with simple GA are developed to attain the solutions and their corresponding train movement is examined. Further, a hierarchical genetic algorithm (HGA) is introduced here to identify the number of coasting points required according to the traffic conditions, and Minimum-Allele-Reserve-Keeper (MARK) is adopted as a genetic operator to achieve fitter solutions.
Resumo:
Many infrastructure and necessity systems such as electricity and telecommunication in Europe and the Northern America were used to be operated as monopolies, if not state-owned. However, they have now been disintegrated into a group of smaller companies managed by different stakeholders. Railways are no exceptions. Since the early 1980s, there have been reforms in the shape of restructuring of the national railways in different parts of the world. Continuous refinements are still conducted to allow better utilisation of railway resources and quality of service. There has been a growing interest for the industry to understand the impacts of these reforms on the operation efficiency and constraints. A number of post-evaluations have been conducted by analysing the performance of the stakeholders on their profits (Crompton and Jupe 2003), quality of train service (Shaw 2001) and engineering operations (Watson 2001). Results from these studies are valuable for future improvement in the system, followed by a new cycle of post-evaluations. However, direct implementation of these changes is often costly and the consequences take a long period of time (e.g. years) to surface. With the advance of fast computing technologies, computer simulation is a cost-effective means to evaluate a hypothetical change in a system prior to actual implementation. For example, simulation suites have been developed to study a variety of traffic control strategies according to sophisticated models of train dynamics, traction and power systems (Goodman, Siu and Ho 1998, Ho and Yeung 2001). Unfortunately, under the restructured railway environment, it is by no means easy to model the complex behaviour of the stakeholders and the interactions between them. Multi-agent system (MAS) is a recently developed modelling technique which may be useful in assisting the railway industry to conduct simulations on the restructured railway system. In MAS, a real-world entity is modelled as a software agent that is autonomous, reactive to changes, able to initiate proactive actions and social communicative acts. It has been applied in the areas of supply-chain management processes (García-Flores, Wang and Goltz 2000, Jennings et al. 2000a, b) and e-commerce activities (Au, Ngai and Parameswaran 2003, Liu and You 2003), in which the objectives and behaviour of the buyers and sellers are captured by software agents. It is therefore beneficial to investigate the suitability or feasibility of applying agent modelling in railways and the extent to which it might help in developing better resource management strategies. This paper sets out to examine the benefits of using MAS to model the resource management process in railways. Section 2 first describes the business environment after the railway 2 Modelling issues on the railway resource management process using MAS reforms. Then the problems emerge from the restructuring process are identified in section 3. Section 4 describes the realisation of a MAS for railway resource management under the restructured scheme and the feasible studies expected from the model.
Resumo:
The main aim of this thesis is to analyse and optimise a public hospital Emergency Department. The Emergency Department (ED) is a complex system with limited resources and a high demand for these resources. Adding to the complexity is the stochastic nature of almost every element and characteristic in the ED. The interaction with other functional areas also complicates the system as these areas have a huge impact on the ED and the ED is powerless to change them. Therefore it is imperative that OR be applied to the ED to improve the performance within the constraints of the system. The main characteristics of the system to optimise included tardiness, adherence to waiting time targets, access block and length of stay. A validated and verified simulation model was built to model the real life system. This enabled detailed analysis of resources and flow without disruption to the actual ED. A wide range of different policies for the ED and a variety of resources were able to be investigated. Of particular interest was the number and type of beds in the ED and also the shift times of physicians. One point worth noting was that neither of these resources work in isolation and for optimisation of the system both resources need to be investigated in tandem. The ED was likened to a flow shop scheduling problem with the patients and beds being synonymous with the jobs and machines typically found in manufacturing problems. This enabled an analytic scheduling approach. Constructive heuristics were developed to reactively schedule the system in real time and these were able to improve the performance of the system. Metaheuristics that optimised the system were also developed and analysed. An innovative hybrid Simulated Annealing and Tabu Search algorithm was developed that out-performed both simulated annealing and tabu search algorithms by combining some of their features. The new algorithm achieves a more optimal solution and does so in a shorter time.
Resumo:
A hospital consists of a number of wards, units and departments that provide a variety of medical services and interact on a day-to-day basis. Nearly every department within a hospital schedules patients for the operating theatre (OT) and most wards receive patients from the OT following post-operative recovery. Because of the interrelationships between units, disruptions and cancellations within the OT can have a flow-on effect to the rest of the hospital. This often results in dissatisfied patients, nurses and doctors, escalating waiting lists, inefficient resource usage and undesirable waiting times. The objective of this study is to use Operational Research methodologies to enhance the performance of the operating theatre by improving elective patient planning using robust scheduling and improving the overall responsiveness to emergency patients by solving the disruption management and rescheduling problem. OT scheduling considers two types of patients: elective and emergency. Elective patients are selected from a waiting list and scheduled in advance based on resource availability and a set of objectives. This type of scheduling is referred to as ‘offline scheduling’. Disruptions to this schedule can occur for various reasons including variations in length of treatment, equipment restrictions or breakdown, unforeseen delays and the arrival of emergency patients, which may compete for resources. Emergency patients consist of acute patients requiring surgical intervention or in-patients whose conditions have deteriorated. These may or may not be urgent and are triaged accordingly. Most hospitals reserve theatres for emergency cases, but when these or other resources are unavailable, disruptions to the elective schedule result, such as delays in surgery start time, elective surgery cancellations or transfers to another institution. Scheduling of emergency patients and the handling of schedule disruptions is an ‘online’ process typically handled by OT staff. This means that decisions are made ‘on the spot’ in a ‘real-time’ environment. There are three key stages to this study: (1) Analyse the performance of the operating theatre department using simulation. Simulation is used as a decision support tool and involves changing system parameters and elective scheduling policies and observing the effect on the system’s performance measures; (2) Improve viability of elective schedules making offline schedules more robust to differences between expected treatment times and actual treatment times, using robust scheduling techniques. This will improve the access to care and the responsiveness to emergency patients; (3) Address the disruption management and rescheduling problem (which incorporates emergency arrivals) using innovative robust reactive scheduling techniques. The robust schedule will form the baseline schedule for the online robust reactive scheduling model.
Resumo:
The scheduling of locomotive movements on cane railways has proven to be a very complex task. Various optimisation methods have been used over the years to try and produce an optimised schedule that eliminates or minimises bin supply delays to harvesters and the factory, while minimising the number of locomotives, locomotive shifts and cane bins, and also the cane age. This paper reports on a new attempt to develop an automatic scheduler using a mathematical model solved using mixed integer programming and constraint programming approaches and blocking parallel job shop scheduling fundamentals. The model solution has been explored using conventional constraint programming search techniques and found to produce a reasonable schedule for small-scale problems with up to nine harvesters. While more effort is required to complete the development of the full model with metaheuristic search techniques, the work completed to date gives confidence that the metaheuristic techniques will provide near optimal solutions in reasonable time.