415 resultados para Effective performance
em Queensland University of Technology - ePrints Archive
Resumo:
Increasing global competition, rapid technological changes, advances in manufacturing and information technology and discerning customers are forcing supply chains to adopt improvement practices that enable them to deliver high quality products at a lower cost and in a shorter period of time. A lean initiative is one of the most effective approaches toward achieving this goal. In the lean improvement process, it is critical to measure current and desired performance level in order to clearly evaluate the lean implementation efforts. Many attempts have tried to measure supply chain performance incorporating both quantitative and qualitative measures but failed to provide an effective method of measuring improvements in performances for dynamic lean supply chain situations. Therefore, the necessity of appropriate measurement of lean supply chain performance has become imperative. There are many lean tools available for supply chains; however, effectiveness of a lean tool depends on the type of the product and supply chain. One tool may be highly effective for a supply chain involved in high volume products but may not be effective for low volume products. There is currently no systematic methodology available for selecting appropriate lean strategies based on the type of supply chain and market strategy This thesis develops an effective method to measure the performance of supply chain consisting of both quantitative and qualitative metrics and investigates the effects of product types and lean tool selection on the supply chain performance Supply chain performance matrices and the effects of various lean tools over performance metrics mentioned in the SCOR framework have been investigated. A lean supply chain model based on the SCOR metric framework is then developed where non- lean and lean as well as quantitative and qualitative metrics are incorporated in appropriate metrics. The values of appropriate metrics are converted into triangular fuzzy numbers using similarity rules and heuristic methods. Data have been collected from an apparel manufacturing company for multiple supply chain products and then a fuzzy based method is applied to measure the performance improvements in supply chains. Using the fuzzy TOPSIS method, which chooses an optimum alternative to maximise similarities with positive ideal solutions and to minimise similarities with negative ideal solutions, the performances of lean and non- lean supply chain situations for three different apparel products have been evaluated. To address the research questions related to effective performance evaluation method and the effects of lean tools over different types of supply chains; a conceptual framework and two hypotheses are investigated. Empirical results show that implementation of lean tools have significant effects over performance improvements in terms of time, quality and flexibility. Fuzzy TOPSIS based method developed is able to integrate multiple supply chain matrices onto a single performance measure while lean supply chain model incorporates qualitative and quantitative metrics. It can therefore effectively measure the improvements for supply chain after implementing lean tools. It is demonstrated that product types involved in the supply chain and ability to select right lean tools have significant effect on lean supply chain performance. Future study can conduct multiple case studies in different contexts.
Resumo:
Construction teams and construction organisations have their own distinctive cultures. There also exists an infrastructure, both social and contractual, which ensures that these projects within which the teams operate are completed successfully. It is these issues which this research has addressed. The project was instigated by Queensland Department of Main Roads, Public Works and John Holland Group in order to address how they might better implement relationship management (RM) on their construction projects. The project was devised initially in order to facilitate a change in culture which would allow the project to be run in a relational manner and would lead to effective performance in terms of the KPIs that the organisations set for themselves, described as business better than usual. This report describes the project, its outcomes and deliverable and indicates the changes that were made to the project during the research process. Hence, the initial premise of the project and the problem to investigate was the implementation of relational contracting: • throughout a range of projects; • with a focus on client body staff. The additions that were made to the project, and documented in the variations to the project, included two major additional areas of study: • client management and stakeholder management; • a live case study of an alliancing project. The context within which the research was undertaken is important. The research was driven by main roads with their desire to improve their operations by focusing on the relationship between the major project participants (however, stakeholder and client organisation management became an obvious issue as the research progressed, hence the variations). The context was initially focussed on main roads, public works and John Holland group organisations but it became clear very quickly that this was in fact an industry-wide issue and not an issue specific solely to the project participants. Hence, the context within which this research took place can be described as below: The deliverables from the project are a toolkit for determining RM needs in an organisation, a monograph describing the practical implementation of RM and the outline for a RM CPD and Masters course
Resumo:
This thesis is a study of new design methods for allowing evolutionary algorithms to be more effectively utilised in aerospace optimisation applications where computation needs are high and computation platform space may be restrictive. It examines the applicability of special hardware computational platforms known as field programmable gate arrays and shows that with the right implementation methods they can offer significant benefits. This research is a step forward towards the advancement of efficient and highly automated aircraft systems for meeting compact physical constraints in aerospace platforms and providing effective performance speedups over traditional methods.
Resumo:
Purpose – The purpose of this paper is to develop an effective methodology for implementing lean manufacturing strategies and a leanness evaluation metric using continuous performance measurement (CPM). Design/methodology/approach – Based on five lean principles, a systematic lean implementation methodology for manufacturing organizations has been proposed. A simplified leanness evaluation metric consisting of both efficiency and effectiveness attributes of manufacturing performance has been developed for continuous evaluation of lean implementation. A case study to validate the proposed methodology has been conducted and proposed CPM metric has been used to assess the manufacturing leanness. Findings – Proposed methodology is able to systematically identify manufacturing wastes, select appropriate lean tools, identify relevant performance indicators, achieve significant performance improvement and establish lean culture in the organization. Continuous performance measurement matrices in terms of efficiency and effectiveness are proved to be appropriate methods for continuous evaluation of lean performance. Research limitations/implications – Effectiveness of the method developed has been demonstrated by applying it in a real life assembly process. However, more tests/applications will be necessary to generalize the findings. Practical implications – Results show that applying the methods developed, managers can successfully identify and remove manufacturing wastes from their production processes. By improving process efficiency, they can optimize their resource allocations. Manufacturers now have a validated step by step methodology for successfully implementing lean strategies. Originality/value – According to the authors’ best knowledge, this is the first known study that proposed a systematic lean implementation methodology based on lean principles and continuous improvement techniques. Evaluation of performance improvement by lean strategies is a critical issue. This study develops a simplified leanness evaluation metric considering both efficiency and effectiveness attributes and integrates it with the lean implementation methodology.
Resumo:
When designed effectively dashboards are expected to reduce information overload and improve performance management. Hence, interest in dashboards has increased recently,which is also evident from the proliferation of dashboard solution providers in the market. Despite dashboards popularity, little is known about the extent of their effectiveness in organizations. Dashboards draw from multiple disciplines but ultimately use visualization to communicate important information to stakeholders. Thus,a better understanding of visualization can improve the design and use of dashboards. This paper reviews the foundations and roles of dashboards in performance management and proposes a framework for future research, which can enhance dashboard design and perceived usefulness depending on the fit between the features of the dashboard and the characteristics of the users.
Resumo:
The Australian tourism tertiary education sector operates in a competitive and dynamic environment, which necessitates a market orientation to be successful. Academic staff and management in the sector must regularly assess the perceptions of prospective and current students, and monitor the satisfaction levels of current students. This study is concerned with the setting and monitoring of satisfaction levels of current students, reporting the results of three longitudinal investigations of student satisfaction in a postgraduate unit. The study also addresses a limitation of a university’s generic teaching evaluation instrument. Importance-performance analysis (IPA) has been recommended as a simple but effective tool for overcoming the deficiencies of many student evaluation studies, which have generally measured only attribute importance or importance at the end of a semester. IPA was used to compare student expectations of the unit at the beginning of semester with their perceptions of performance ten weeks later. The first stage documented key benchmarks for which amendments to the unit based on student feedback could be evaluated during subsequent teaching periods.
Resumo:
With the advent of Service Oriented Architecture, Web Services have gained tremendous popularity. Due to the availability of a large number of Web services, finding an appropriate Web service according to the requirement of the user is a challenge. This warrants the need to establish an effective and reliable process of Web service discovery. A considerable body of research has emerged to develop methods to improve the accuracy of Web service discovery to match the best service. The process of Web service discovery results in suggesting many individual services that partially fulfil the user’s interest. By considering the semantic relationships of words used in describing the services as well as the use of input and output parameters can lead to accurate Web service discovery. Appropriate linking of individual matched services should fully satisfy the requirements which the user is looking for. This research proposes to integrate a semantic model and a data mining technique to enhance the accuracy of Web service discovery. A novel three-phase Web service discovery methodology has been proposed. The first phase performs match-making to find semantically similar Web services for a user query. In order to perform semantic analysis on the content present in the Web service description language document, the support-based latent semantic kernel is constructed using an innovative concept of binning and merging on the large quantity of text documents covering diverse areas of domain of knowledge. The use of a generic latent semantic kernel constructed with a large number of terms helps to find the hidden meaning of the query terms which otherwise could not be found. Sometimes a single Web service is unable to fully satisfy the requirement of the user. In such cases, a composition of multiple inter-related Web services is presented to the user. The task of checking the possibility of linking multiple Web services is done in the second phase. Once the feasibility of linking Web services is checked, the objective is to provide the user with the best composition of Web services. In the link analysis phase, the Web services are modelled as nodes of a graph and an allpair shortest-path algorithm is applied to find the optimum path at the minimum cost for traversal. The third phase which is the system integration, integrates the results from the preceding two phases by using an original fusion algorithm in the fusion engine. Finally, the recommendation engine which is an integral part of the system integration phase makes the final recommendations including individual and composite Web services to the user. In order to evaluate the performance of the proposed method, extensive experimentation has been performed. Results of the proposed support-based semantic kernel method of Web service discovery are compared with the results of the standard keyword-based information-retrieval method and a clustering-based machine-learning method of Web service discovery. The proposed method outperforms both information-retrieval and machine-learning based methods. Experimental results and statistical analysis also show that the best Web services compositions are obtained by considering 10 to 15 Web services that are found in phase-I for linking. Empirical results also ascertain that the fusion engine boosts the accuracy of Web service discovery by combining the inputs from both the semantic analysis (phase-I) and the link analysis (phase-II) in a systematic fashion. Overall, the accuracy of Web service discovery with the proposed method shows a significant improvement over traditional discovery methods.
Resumo:
The reported study was conducted to compare and contrast current manufacturing practices between two countries, Australia and Malaysia, and identify the practices that significantly influence their manufacturing performances. The results are based on data collected from surveys using a standard questionnaire in both countries. Evidence indicates that product quality and reliability is the main competitive factor for manufacturers. Maintaining a supplier rating system and regularly updating it with field failure and warranty data and making use of product data management are found to be effective manufacturing practices. In terms of the investigated manufacturing performance, Australian manufacturers are marginally ahead of their Malaysian counterparts. However, Malaysian manufacturers came out ahead on most dimensions of advanced quality and manufacturing practices, particularly in the adoption of product data management, effective supply chains and relationships with suppliers and customers.
Resumo:
Effective knowledge transfer can prevent the reinvention of systems and ideas as well as the repetition of errors. Doing so will save substantial time, as well as contribute to better performance of projects and project-based organisations (PBOs). Despite the importance of knowledge, PBOs face serious barriers to the effective transfer of knowledge, while their characteristics, such as unique and innovative approaches taken during every project, mean they have much to gain from knowledge transfer. As each new project starts, there is the strong potential to reinvent the process, rather than utilise learning from previous projects. In fact, rework is one of the primary factors contributing to construction industry's poor performance and productivity. Current literature has identified several barriers to knowledge transfer in organisational settings in general, and not specifically PBOs. However, PBOs significantly differ from other types of organisations. PBOs operate mainly on temporary projects, where time is a crucial factor and people are more mobile than in other organisational settings. The aim of this research is to identify the key barriers that prevent effective knowledge transfer for PBOs, exclusively. Interviews with project managers and senior managers of PBOs complement the analysis of the literature and provide professional expertise. This research is crucial to gaining a better understanding of obstacles that hinder knowledge transfer in projects. The main contribution of this research is exclusive for PBO, list of key barriers that organisation and project managers need to consider to ensure effective knowledge transfer and better project management.
Resumo:
The research on project learning has recognised the significance of knowledge transfer in project based organisations (PBOs). Effective knowledge transfer across projects avoids reinventions, enhances knowledge creation and saves lots of time that is crucial in project environment. In order to facilitate knowledge transfer, many PBOs have invested lots of financial and human resources to implement IT-based knowledge repository. However, some empirical studies found that employees would rather turn for knowledge to colleagues despite their ready access to IT-based knowledge repository. Therefore, it is apparent that social networks play a pivotal role in the knowledge transfer across projects. Some scholars attempt to explore the effect of network structure on knowledge transfer and performance, however, focused only on egocentric networks and the groups’ internal social networks. It has been found that the project’s external social network is also critical, in that the team members can not handle critical situations and accomplish the projects on time without the assistance and knowledge from external sources. To date, the influence of the structure of a project team’s internal and external social networks on project performance, and the interrelation between both networks are barely known. In order to obtain such knowledge, this paper explores the interrelation between the structure of a project team’s internal and external social networks, and their effect on the project team’s performance. Data is gathered through survey questionnaire distributed online to respondents. Collected data is analysed applying social network analysis (SNA) tools and SPSS. The theoretical contribution of this paper is the knowledge of the interrelation between the structure of a project team’s internal and external social networks and their influence on the project team’s performance. The practical contribution lies in the guideline to be proposed for constructing the structure of project team’s internal and external social networks.
Resumo:
Effective information and knowledge management (IKM) is critical to corporate success; yet, its actual establishment and management is not yet fully understood. We identify ten organizational elements that need to be addressed to ensure the effective implementation and maintenance of information and knowledge management within organizations. We define these elements and provide key characterizations. We then discuss a case study that describes the implementation of an information system (designed to support IKM) in a medical supplies organization. We apply the framework of organizational elements in our analysis to uncover the enablers and barriers in this systems implementation project. Our analysis suggests that taking the ten organizational elements into consideration when implementing information systems will assist practitioners in managing information and knowledge processes more effectively and efficiently. We discuss implications for future research.
Resumo:
Over the years, people have often held the hypothesis that negative feedback should be very useful for largely improving the performance of information filtering systems; however, we have not obtained very effective models to support this hypothesis. This paper, proposes an effective model that use negative relevance feedback based on a pattern mining approach to improve extracted features. This study focuses on two main issues of using negative relevance feedback: the selection of constructive negative examples to reduce the space of negative examples; and the revision of existing features based on the selected negative examples. The former selects some offender documents, where offender documents are negative documents that are most likely to be classified in the positive group. The later groups the extracted features into three groups: the positive specific category, general category and negative specific category to easily update the weight. An iterative algorithm is also proposed to implement this approach on RCV1 data collections, and substantial experiments show that the proposed approach achieves encouraging performance.
Resumo:
Many data mining techniques have been proposed for mining useful patterns in databases. However, how to effectively utilize discovered patterns is still an open research issue, especially in the domain of text mining. Most existing methods adopt term-based approaches. However, they all suffer from the problems of polysemy and synonymy. This paper presents an innovative technique, pattern taxonomy mining, to improve the effectiveness of using discovered patterns for finding useful information. Substantial experiments on RCV1 demonstrate that the proposed solution achieves encouraging performance.