2 resultados para Effective performance

em CaltechTHESIS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work presents the development and investigation of a new type of concrete for the attenuation of waves induced by dynamic excitation. Recent progress in the field of metamaterials science has led to a range of novel composites which display unusual properties when interacting with electromagnetic, acoustic, and elastic waves. A new structural metamaterial with enhanced properties for dynamic loading applications is presented, which is named metaconcrete. In this new composite material the standard stone and gravel aggregates of regular concrete are replaced with spherical engineered inclusions. Each metaconcrete aggregate has a layered structure, consisting of a heavy core and a thin compliant outer coating. This structure allows for resonance at or near the eigenfrequencies of the inclusions, and the aggregates can be tuned so that resonant oscillations will be activated by particular frequencies of an applied dynamic loading. The activation of resonance within the aggregates causes the overall system to exhibit negative effective mass, which leads to attenuation of the applied wave motion. To investigate the behavior of metaconcrete slabs under a variety of different loading conditions a finite element slab model containing a periodic array of aggregates is utilized. The frequency dependent nature of metaconcrete is investigated by considering the transmission of wave energy through a slab, which indicates the presence of large attenuation bands near the resonant frequencies of the aggregates. Applying a blast wave loading to both an elastic slab and a slab model that incorporates the fracture characteristics of the mortar matrix reveals that a significant portion of the supplied energy can be absorbed by aggregates which are activated by the chosen blast wave profile. The transfer of energy from the mortar matrix to the metaconcrete aggregates leads to a significant reduction in the maximum longitudinal stress, greatly improving the ability of the material to resist damage induced by a propagating shock wave. The various analyses presented in this work provide the theoretical and numerical background necessary for the informed design and development of metaconcrete aggregates for dynamic loading applications, such as blast shielding, impact protection, and seismic mitigation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this thesis is to investigate the effect on performance and chamber temperature of adding hydrogen to a propellant system. The systems investigated are:

(1) RFNA-Aniline

(2) Nitromethane

(3) Anhydrous hydrazene-liquid oxygen

Since a systematic investigation of the performance parameters of the RFNA-Aniline system over a wide range of mixture ratios has never been made, it was decided to make these calculations, in addition to the investigations stated above.

The results of the calculations can best be summarized by a study of the figures at the end of the thesis. A few generalizations can be made. The effect of adding hydrogen in small quantities to a high temperature system is to increase the performance considerably without too much change in the chamber temperature. As more hydrogen is added, the percentage increase in performance. If hydrogen is added in large quantities, both the performance curve (effective exhaust velocity) and the chamber temperature curve flatten out.

The behavior discussed above is characteristic of hot propellant systems such as RFNA-Aniline and anhydrous hydrazene. In a low temperature system, such as nitromethane, the effect is quite different. The addition of hydrogen in small quantities causes a rapid decrease in chamber temperature, but the increase in performance is considerably less on a percentage basis. As more hydrogen is added the changes in performance and chamber temperature are almost linear.