341 resultados para Conventional polymer matrix

em Queensland University of Technology - ePrints Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Organic solar cells based on bulk heterojunction between a conductive polymer and a carbon nanostructure offer potential advantages compared to conventional inorganic cells. Low cost, light weight, flexibility and high peak power per unit weight are all features that can be considered a reality for organic photovoltaics. Although polymer/carbon nanotubes solar cells have been proposed, only low power conversion efficiencies have been reached without addressing the mechanisms responsible for this poor performance. The purpose of this work is therefore to investigate the basic interaction between carbon nanotubes and poly(3-hexylthiophene) in order to demonstrate how this interaction affects the performance of photovoltaic devices. The outcomes of this study are the contributions made to the knowledge of the phenomena explaining the behaviour of electronic devices based on carbon nanotubes and poly(3-hexylthiophene). In this PhD, polymer thin films with the inclusion of uniformly distributed carbon nanotubes were deposited from solution and characterised. The bulk properties of the composites were studied with microscopy and spectroscopy techniques to provide evidence of higher degrees of polymer order when interacting with carbon nanotubes. Although bulk investigation techniques provided useful information about the interaction between the polymer and the nanotubes, clear evidence of the phenomena affecting the heterojunction formed between the two species was investigated at nanoscale. Identifying chirality-driven polymer assisted assembly on the carbon nanotube surface was one of the major achievements of this study. Moreover, the analysis of the electrical behaviour of the heterojunction between the polymer and the nanotube highlighted the charge transfer responsible for the low performance of photovoltaic devices. Polymer and carbon nanotube composite-based devices were fabricated and characterised in order to study their electronic properties. The carbon nanotube introduction in the polymer matrix evidenced a strong electrical conductivity enhancement but also a lower photoconductivity response. Moreover, the extension of pristine polymer device characterisation models to composites based devices evidenced the conduction mechanisms related to nanotubes. Finally, the introduction of carbon nanotubes in the polymer matrix was demonstrated to improve the pristine polymer solar cell performance and the spectral response even though the power conversion efficiency is still too low.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Polymer nanocomposites (NC) are fabricated by incorporating well dispersed nanoscale particles within a polymer matrix. This study focuses on elastomeric polyurethane (PU) based nanocomposites, containing organically modified silicates (OMS), as bioactive materials. Nanocomposites incorporating chlorhexidine diacetate as an organic modifier (OM) were demonstrated to be antibacterial with a dose dependence related to both the silicate loading and the loading of OM. When the non-antibacterial OM dodecylamine was used, both cell and platelet adhesion were decreased on the nanocomposite surface. These results suggest that OM is released from the polymer and can impact on cell behaviour at the interface. Nanocomposites have potential use as bioactive materials in a range of biomedical applications.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Graphene-polymer nanocomposites have attracted considerable attention due to their unique properties, such as high thermal conductivity (~3000 W mK-1), mechanical stiffness (~ 1 TPa) and electronic transport properties. Relatively, the thermal performance of graphene-polymer composites has not been well investigated. The major technical challenge is to understand the interfacial thermal transport between graphene nanofiller and polymer matrix at small material length scale. To this end, we conducted molecular dynamics simulations to investigate the thermal transport in graphene-polyethylene nanocomposite. The influence of functionalization with hydrocarbon chains on the interfacial thermal conductivity was studied, taking into account of the effects of model size and thermal conductivity of graphene. The results are considered to contribute to development of new graphene-polymer nanocomposites with tailored thermal properties.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Graphene–polymer nanocomposites have promising properties as new structural and functional materials. The remarkable mechanical property enhancement in these nanocomposites is generally attributed to exceptional mechanical property of graphene and possible load transfer between graphene and polymer matrix. However, the underlying strengthening and toughening mechanisms have not been well understood. In this work, the interfacial behavior of graphene-polyethylene (PE) was investigated using molecular dynamics (MD) method. The interfacial shear force (ISF) and interfacial shear stress (ISS) between graphene and PE matrix were evaluated, taking into account graphene size, the number of graphene layers and the structural defects in graphene. MD results show that the ISS at graphene-PE interface mainly distributes at each end of the graphene nanofiller within the range of 1 nm, and much larger than that at carbon nanotube (CNT)-PE interface. Moreover, it was found that the ISS at graphene-PE interface is sensitive to the layer number.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this study, we improve the insulation performance of polymeric nano-dielectrics by using plasma pre-treatment on the filled nanoparticles. Non-equilibrium atmospheric-pressure plasma is employed to modify a commercial type of silane-coated SiO2 nanoparticles. The treated nanoparticles and the synthesized epoxy-based nanocomposites are characterized using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). The plasma-treated SiO2 nanoparticles can disperse uniformly and form strong covalent bonds with the molecules of the polymer matrix. Moreover, the electrical insulation properties of the synthesized nanocomposites are investigated. Results show that the nanocomposites with plasma-treated SiO2 nanoparticles obtain improved dielectric breakdown strength and extended endurance under intense electrical ageing process.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Thermal transport in graphene-polymer nanocomposite is complicated and has not been well understood. The interfacial thermal transport between graphene nanofiller and polymer matrix is expected to play a key role in controlling the overall thermal performance of graphene-polymer nanocomposite. In this work, we investigated the thermal transport across graphene-polymer interfaces functionalized with end-grafted polymer chains using molecular dynamics simulations. The effects of grafting density, chain length and initial morphology on the interfacial thermal transport were systematically investigated. It was found that end-grafted polymer chains could significantly enhance interfacial thermal transport and the underlying mechanism was considered to be the enhanced vibration coupling between graphene and polymer. In addition, a theoretical model based on effective medium theory was established to predict the thermal conductivity in graphene-polymer nanocomposites.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Forestry by-products have potential applications as components of wood composites. Replacement of conventional pine radiata wood-fibres by the fibres from the seeds (SCF) of the by-products, require determining and optimizing the mechanical properties to producing highest quality products. Response to mechanical stress is an important aspect to consider towards partial or full replacement of the wood-fibres by SCFs. In the present study the critical strain energy release rate, and the fracture toughness are derived from the published data. The present work uses rules of mixture to derive the mechanical and the physical properties of the SCF and relates the performance of the composites of the wood-fibres and the SCF to chemical composition, dispersion, weight and Vf of the fibres. We have also derived the Gc, the critical strain energy release rate, KIC, the fracture toughness of the composites.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The inclusion of carbon nanotubes in polymer matrix has been proposed to enhance the polymer’s physical and electrical properties. In this study, microscopic and spectroscopic techniques are used to investigate the interaction between poly(3-hexylthiophene) (P3HT) and nanotubes and the reciprocal modification of physical properties. The presence of P3HT-covered nanotubes dispersed in the polymer matrix has been observed by atomic force microscopy and transmission electron microscopy. Then, the modification of P3HT optical properties due to nanotube inclusion has been evidenced with spectroscopic techniques like absorption and Raman spectroscopy. The study is completed with detailed nanoscale analysis by scanning probe techniques. The ordered self assembly of polymer adhering on the nanotube is unveiled by showing an example of helical wrapping of P3HT. Scanning tunneling spectroscopy study provides information on the electronic structure of nanotube-polymer assembly, revealing the charge transfer from P3HT to the nanotube.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fibre composite structures have become the most attractive candidate for civil engineering applications. Fibre reinforced plastic polymer (FRP) composite materials have been used in the rehabilitation and replacement of the old degrading traditional structures or build new structures. However, the lack of design standards for civil infrastructure limits their structural applications. The majority of the existing applications have been designed based on the research and guidelines provided by the fibre composite manufacturers or based on the designer’s experience. It has been a tendency that the final structure is generally over-designed. This paper provides a review on the available studies related to the design optimization of fibre composite structures used in civil engineering such as; plate, beam, box beam, sandwich panel, bridge girder, and bridge deck. Various optimization methods are presented and compared. In addition, the importance of using the appropriate optimization technique is discussed. An improved methodology, which considering experimental testing, numerical modelling, and design constrains, is proposed in the paper for design optimization of composite structures.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Two types of carbon nanotube nanocomposite strain sensors were prepared by mixing carbon nanotubes with epoxy (nanocomposite sensor) and sandwiching a carbon nanotube film between two epoxy layers (sandwich sensor). The conductivity, response and sensitivity to static and dynamic mechanical strains in these sensors were investigated. The nanocomposite sensor with 2-3 wt.% carbon nanotube demonstrated high sensitivity to mechanical strain and environmental temperature, with gauge factors of 5-8. On the other hand, a linear relationship between conductivity and dynamic mechanical strain was observed in the sandwich sensor. The sandwich sensor was also not sensitive to temperature although its strain sensitivity (gauge factor of about 3) was lower as compared with the nanocomposite sensor. Both sensors have excellent response to static and dynamic strains, thereby having great potential for strain sensing applications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work, the thermal expansion properties of carbon nanotube (CNT)-reinforced nanocomposites with CNT content ranging from 1 to 15 wt% were evaluated using a multi-scale numerical approach, in which the effects of two parameters, i.e., temperature and CNT content, were investigated extensively. For all CNT contents, the obtained results clearly revealed that within a wide low-temperature range (30°C ~ 62°C), thermal contraction is observed, while thermal expansion occurs in a high-temperature range (62°C ~ 120°C). It was found that at any specified CNT content, the thermal expansion properties vary with temperature - as temperature increases, the thermal expansion rate increases linearly. However, at a specified temperature, the absolute value of the thermal expansion rate decreases nonlinearly as the CNT content increases. Moreover, the results provided by the present multi-scale numerical model were in good agreement with those obtained from the corresponding theoretical analyses and experimental measurements in this work, which indicates that this multi-scale numerical approach provides a powerful tool to evaluate the thermal expansion properties of any type of CNT/polymer nanocomposites and therefore promotes the understanding on the thermal behaviors of CNT/polymer nanocomposites for their applications in temperature sensors, nanoelectronics devices, etc.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Bulk amount of graphite oxide was prepared by oxidation of graphite using the modified Hummers method and its ultrasonication in organic solvents yielded graphene oxide (GO). X-ray diffraction (XRD) pattern, X-ray photoelectron (XPS), Raman and Fourier transform infrared (FTIR) spectroscopy indicated the successful preparation of GO. XPS survey spectrum of GO revealed the presence of 66.6 at% C and 30.4 at% O. Scanning electron microscopy (SEM) and Transmission electron microscopy (TEM) images of the graphene oxide showed that they consist of a large amount of graphene oxide platelets with a curled morphology containing of a thin wrinkled sheet like structure. AFM image of the exfoliated GO signified that the average thickness of GO sheets is ~1.0 nm which is very similar to GO monolayer. GO/epoxy nanocomposites were prepared by typical solution mixing technique and influence of GO on mechanical and thermal properties of nanocomposites were investigated. As for the mechanical behaviour of GO/epoxy nanocomposites, 0.5 wt% GO in the nanocomposite achieved the maximum increase in the elastic modulus (~35%) and tensile strength (~7%). The TEM analysis provided clear image of microstructure with homogeneous dispersion of GO in the polymer matrix. The improved strength properties of GO/epoxy nanocomposites can be attributed to inherent strength of GO, the good dispersion and the strong interfacial interactions between the GO sheets and the polymer matrix. However, incorporation of GO showed significant negative effect on composite glass transition temperature (Tg). This may arise due to the interference of GO on curing reaction of epoxy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Piezoelectric composites comprising an active phase of ferroelectric ceramic and a polymer matrix have recently attracted numerous sensory applications. However, it remains a major challenge to further improve their electromechanical response for advanced applications such as precision control and monitoring systems. We hereby investigated the incorporation of graphene platelets (GnPs) and multi-walled carbon nanotubes (MWNTs), each with various weight fractions, into PZT (lead zirconate titanate)/epoxy composites to produce three-phase nanocomposites. The nanocomposite films show markedly improved piezoelectric coefficients and electromechanical responses (50%) besides an enhancement of ~200% in stiffness. Carbon nanomaterials strengthened the impact of electric field on the PZT particles by appropriately raising the electrical conductivity of epoxy. GnPs have been proved far more promising in improving the poling behavior and dynamic response than MWNTs. The superior dynamic sensitivity of GnP-reinforced composite may be caused by GnPs’ high load transfer efficiency arising from their two-dimensional geometry and good compatibility with the matrix. Reduced acoustic impedance mismatch resulted from the improved thermal conductance may also contribute to the higher sensitivity of GnP-reinforced composite. This research pointed out the potential of employing GnPs to develop highly sensitive piezoelectric composites for sensing applications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Changes in the molecular structure of polymer antioxidants such as hindered amine light stabilisers (HALS) is central to their efficacy in retarding polymer degradation and therefore requires careful monitoring during their in-service lifetime. The HALS, bis-(1-octyloxy-2,2,6,6-tetramethyl-4-piperidinyl) sebacate (TIN123) and bis-(1,2,2,6,6-pentamethyl-4-piperidinyl) sebacate (TIN292), were formulated in different polymer systems and then exposed to various curing and ageing treatments to simulate in-service use. Samples of these coatings were then analysed directly using liquid extraction surface analysis (LESA) coupled with a triple quadrupole mass spectrometer. Analysis of TIN123 formulated in a cross-linked polyester revealed that the polymer matrix protected TIN123 from undergoing extensive thermal degradation that would normally occur at 292 degrees C, specifically, changes at the 1- and 4-positions of the piperidine groups. The effect of thermal versus photo-oxidative degradation was also compared for TIN292 formulated in polyacrylate films by monitoring the in situ conversion of N-CH3 substituted piperidines to N-H. The analysis confirmed that UV light was required for the conversion of N-CH3 moieties to N-H - a major pathway in the antioxidant protection of polymers - whereas this conversion was not observed with thermal degradation. The use of tandem mass spectrometric techniques, including precursor-ion scanning, is shown to be highly sensitive and specific for detecting molecular-level changes in HALS compounds and, when coupled with LESA, able to monitor these changes in situ with speed and reproducibility. (C) 2013 Elsevier B. V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Exploring thermal transport in graphene-polymer nanocomposite is significant to its applications with better thermal properties. Interfacial thermal conductance between graphene and polymer matrix plays a critical role in the improvement of thermal conductivity of graphene-polymer nanocomposite. Unfortunately, it is still challenging to understand the interfacial thermal transport between graphene nanofiller and polymer matrix at small material length scale. To this end, using non-equilibrium molecular dynamics simulations, we investigate the interfacial thermal conductance of graphene-polyethylene (PE) nanocomposite. The influence of functionalization with hydrocarbon chains on the interfacial thermal conductance of graphene-polymer nanocomposites was studied, taking into account of the effects of model size and thermal conductivity of graphene. An analytical model is also used to calculate the thermal conductivity of nanocomposite. The results are considered to contribute to development of new graphene-polymer nanocomposites with tailored thermal properties.