682 resultados para Computer Engineering|Computer science
em Queensland University of Technology - ePrints Archive
Resumo:
Purpose The purpose of this study was to evaluate the validity of the CSA activity monitor as a measure of children's physical activity using energy expenditure (EE) as a criterion measure. Methods Thirty subjects aged 10 to 14 performed three 5-min treadmill bouts at 3, 4, and 6 mph, respectively. While on the treadmill, subjects wore CSA (WAM 7164) activity monitors on the right and left hips. (V) over dot O-2 was monitored continuously by an automated system. EE was determined by multiplying the average (V) over dot O-2 by the caloric equivalent of the mean respiratory exchange ratio. Results Repeated measures ANOVA indicated that both CSA monitors were sensitive to changes in treadmill speed. Mean activity counts from each CSA unit were not significantly different and the intraclass reliability coefficient for the two CSA units across all speeds was 0.87. Activity counts from both CSA units were strongly correlated with EE (r = 0.86 and 0.87, P < 0.001). An EE prediction equation was developed from 20 randomly selected subjects and cross-validated on the remaining 10. The equation predicted mean EE within 0.01 kcal.min(-1). The correlation between actual and predicted values was 0.93 (P < 0.01) and the SEE was 0.93 kcal.min(-1). Conclusion These data indicate that the CSA monitor is a valid and reliable tool for quantifying treadmill walking and running in children.
Resumo:
Scoliosis is a three-dimensional spinal deformity which requires surgical correction in progressive cases. In order to optimize correction and avoid complications following scoliosis surgery, patient-specific finite element models (FEM) are being developed and validated by our group. In this paper, the modeling methodology is described and two clinically relevant load cases are simulated for a single patient. Firstly, a pre-operative patient flexibility assessment, the fulcrum bending radiograph, is simulated to assess the model's ability to represent spine flexibility. Secondly, intra-operative forces during single rod anterior correction are simulated. Clinically, the patient had an initial Cobb angle of 44 degrees, which reduced to 26 degrees during fulcrum bending. Surgically, the coronal deformity corrected to 14 degrees. The simulated initial Cobb angle was 40 degrees, which reduced to 23 degrees following the fulcrum bending load case. The simulated surgical procedure corrected the coronal deformity to 14 degrees. The computed results for the patient-specific FEM are within the accepted clinical Cobb measuring error of 5 degrees, suggested that this modeling methodology is capable of capturing the biomechanical behaviour of a scoliotic human spine during anterior corrective surgery.
Resumo:
The integration of unmanned aircraft into civil airspace is a complex issue. One key question is whether unmanned aircraft can operate just as safely as their manned counterparts. The absence of a human pilot in unmanned aircraft automatically points to a deficiency that is the lack of an inherent see-and-avoid capability. To date, regulators have mandated that an “equivalent level of safety” be demonstrated before UAVs are permitted to routinely operate in civil airspace. This chapter proposes techniques, methods, and hardware integrations that describe a “sense-and-avoid” system designed to address the lack of a see-and-avoid capability in UAVs.
Resumo:
This paper describes a method for measuring the creative potential of computer games. The research approach applies a behavioral and verbal protocol to analyze the factors that influence the creative processes used by people as they play computer games from the puzzle genre. Creative potential is measured by examining task motivation and domain-relevant and creativity-relevant skills. This paper focuses on the reliability of the factors used for measurement, determining those factors that are more strongly related to creativity. The findings show that creative potential may be determined by examining the relationship between skills required and the effect of intrinsic motivation within game play activities.
Resumo:
It is acknowledged around the world that many university students struggle with learning to program (McCracken et al., 2001; McGettrick et al., 2005). In this paper, we describe how we have developed a research programme to systematically study and incrementally improve our teaching. We have adopted a research programme with three elements: (1) a theory that provides an organising framework for defining the type of phenomena and data of interest, (2) data on how the class as a whole performs on formative assessment tasks that are framed from within the organising framework, and (3) data from one-on-one think aloud sessions, to establish why students struggle with some of those in-class formative assessment tasks. We teach introductory computer programming, but this three-element structure of our research is applicable to many areas of engineering education research.
Resumo:
We blend research from human-computer interface (HCI) design with computational based crypto- graphic provable security. We explore the notion of practice-oriented provable security (POPS), moving the focus to a higher level of abstraction (POPS+) for use in providing provable security for security ceremonies involving humans. In doing so we high- light some challenges and paradigm shifts required to achieve meaningful provable security for a protocol which includes a human. We move the focus of security ceremonies from being protocols in their context of use, to the protocols being cryptographic building blocks in a higher level protocol (the security cere- mony), which POPS can be applied to. In order to illustrate the need for our approach, we analyse both a protocol proven secure in theory, and a similar proto- col implemented by a �nancial institution, from both HCI and cryptographic perspectives.
Resumo:
This paper reports on the implementation of a non-invasive electroencephalography-based brain-computer interface to control functions of a car in a driving simulator. The system is comprised of a Cleveland Medical Devices BioRadio 150 physiological signal recorder, a MATLAB-based BCI and an OKTAL SCANeR advanced driving experience simulator. The system utilizes steady-state visual-evoked potentials for the BCI paradigm, elicited by frequency-modulated high-power LEDs and recorded with the electrode placement of Oz-Fz with Fz as ground. A three-class online brain-computer interface was developed and interfaced with an advanced driving simulator to control functions of the car, including acceleration and steering. The findings are mainly exploratory but provide an indication of the feasibility and challenges of brain-controlled on-road cars for the future, in addition to a safe, simulated BCI driving environment to use as a foundation for research into overcoming these challenges.
Resumo:
Molecular-level computer simulations of restricted water diffusion can be used to develop models for relating diffusion tensor imaging measurements of anisotropic tissue to microstructural tissue characteristics. The diffusion tensors resulting from these simulations can then be analyzed in terms of their relationship to the structural anisotropy of the model used. As the translational motion of water molecules is essentially random, their dynamics can be effectively simulated using computers. In addition to modeling water dynamics and water-tissue interactions, the simulation software of the present study was developed to automatically generate collagen fiber networks from user-defined parameters. This flexibility provides the opportunity for further investigations of the relationship between the diffusion tensor of water and morphologically different models representing different anisotropic tissues.
Resumo:
This paper describes a behaviour analysis designed to measure the creative potential of computer game activities. The research approach applies a behavioural and verbal protocol to analyze the factors that influence the creative processes used by people as they play computer games from the puzzle genre. Creative components are measured by examining task motivation as well as domain-relevant and creativity-relevant skills factors. This paper focuses on how three puzzle games embody activity that might facilitate creative processes. The findings show that game playing activities significantly impact upon creative potential of computer games.
Resumo:
Novel computer vision techniques have been developed for automatic monitoring of crowed environments such as airports, railway stations and shopping malls. Using video feeds from multiple cameras, the techniques enable crowd counting, crowd flow monitoring, queue monitoring and abnormal event detection. The outcome of the research is useful for surveillance applications and for obtaining operational metrics to improve business efficiency.
Resumo:
This thesis developed a method for real-time and handheld 3D temperature mapping using a combination of off-the-shelf devices and efficient computer algorithms. It contributes a new sensing and data processing framework to the science of 3D thermography, unlocking its potential for application areas such as building energy auditing and industrial monitoring. New techniques for the precise calibration of multi-sensor configurations were developed, along with several algorithms that ensure both accurate and comprehensive surface temperature estimates can be made for rich 3D models as they are generated by a non-expert user.
Resumo:
This paper describes a design framework intended to conceptually map the influence that game design has on the creative activity people engage in during gameplay. The framework builds on behavioral and verbal analysis of people playing puzzle games. The analysis was designed to better understand the extent to which gameplay activities within different games facilitate creative problem solving. We have used an expert review process to evaluate these games in terms of their game design elements and have taken a cognitive action approach to this process to investigate how particular elements produce the potential for creative activity. This paper proposes guidelines that build upon our understanding of the relationship between the creative processes that players undertake during a game and the components of the game that allow these processes to occur. These guidelines may be used in the game design process to better facilitate creative gameplay activity.