18 resultados para CCM
em Queensland University of Technology - ePrints Archive
Resumo:
The Collaborative Cohort Model (CCM) for research supervision was developed and piloted as an alternative to the Apprentice Master Model (AMM), which is currently used with most doctoral dissertations. The CCM was developed in response to concerns about completion rates and the quality of research supervision. The feedback from the initial cohort of doctoral students who have experienced the model is presented.
Resumo:
ABSTRACT: Neuropathy is a cause of significant disability in patients with Fabry disease, yet its diagnosis is difficult. In this study we compared the novel noninvasive techniques of corneal confocal microscopy (CCM) to quantify small-fiber pathology, and non-contact corneal esthesiometry (NCCA) to quantify loss of corneal sensation, with established tests of neuropathy in patients with Fabry disease. Ten heterozygous females with Fabry disease not on enzyme replacement therapy (ERT), 6 heterozygous females, 6 hemizygous males on ERT, and 14 age-matched, healthy volunteers underwent detailed quantification of neuropathic symptoms, neurological deficits, neurophysiology, quantitative sensory testing (QST), NCCA, and CCM. All patients with Fabry disease had significant neuropathic symptoms and an elevated Mainz score. Peroneal nerve amplitude was reduced in all patients and vibration perception threshold was elevated in both male and female patients on ERT. Cold sensation (CS) threshold was significantly reduced in both male and female patients on ERT (P < 0.02), but warm sensation (WS)and heat-induced pain (HIP) were only significantly increased in males onERT (P<0.01). However, corneal sensation assessed withNCCAwas significantly reduced in female (P < 0.02) and male (P < 0.04) patients on ERT compared with control subjects. According to CCM, corneal nerve fiber and branch density was significantly reduced in female (P < 0.03) and male (P < 0.02) patients on ERT compared with control subjects. Furthermore, the severity of neuropathic symptoms and the neurological component of the Mainz Severity Score Index correlated significantly with QSTand CCM. This study shows that CCM and NCCA provide a novel means to detect early nerve fiber damage and dysfunction, respectively, in patients with Fabry disease.
Resumo:
Patients with idiopathic small fibre neuropathy (ISFN) have been shown to have significant intraepidermal nerve fibre loss and an increased prevalence of impaired glucose tolerance (IGT). It has been suggested that the dysglycemia of IGT and additional metabolic risk factors may contribute to small nerve fibre damage in these patients. Twenty-five patients with ISFN and 12 aged-matched control subjects underwent a detailed evaluation of neuropathic symptoms, neurological deficits (Neuropathy deficit score (NDS); Nerve Conduction Studies (NCS); Quantitative Sensory Testing (QST) and Corneal Confocal Microscopy (CCM)) to quantify small nerve fibre pathology. Eight (32%) patients had IGT. Whilst all patients with ISFN had significant neuropathic symptoms, NDS, NCS and QST except for warm thresholds were normal. Corneal sensitivity was reduced and CCM demonstrated a significant reduction in corneal nerve fibre density (NFD) (Pb0.0001), nerve branch density (NBD) (Pb0.0001), nerve fibre length (NFL) (Pb0.0001) and an increase in nerve fibre tortuosity (NFT) (Pb0.0001). However these parameters did not differ between ISFN patients with and without IGT, nor did they correlate with BMI, lipids and blood pressure. Corneal confocal microscopy provides a sensitive non-invasive means to detect small nerve fibre damage in patients with ISFN and metabolic abnormalities do not relate to nerve damage.
Resumo:
Aim/hypothesis Immune mechanisms have been proposed to play a role in the development of diabetic neuropathy. We employed in vivo corneal confocal microscopy (CCM) to quantify the presence and density of Langerhans cells (LCs) in relation to the extent of corneal nerve damage in Bowman's layer of the cornea in diabetic patients. Methods 128 diabetic patients aged 58±1 yrs with a differing severity of neuropathy based on Neuropathy Deficit Score (NDS—4.7±0.28) and 26 control subjects aged 53±3 yrs were examined. Subjects underwent a full neurological evaluation, evaluation of corneal sensation with non-contact corneal aesthesiometry (NCCA) and corneal nerve morphology using corneal confocal microscopy (CCM). Results The proportion of individuals with LCs was significantly increased in diabetic patients (73.8%) compared to control subjects (46.1%), P=0.001. Furthermore, LC density (no/mm2) was significantly increased in diabetic patients (17.73±1.45) compared to control subjects (6.94±1.58), P=0.001 and there was a significant correlation with age (r=0.162, P=0.047) and severity of neuropathy (r=−0.202, P=0.02). There was a progressive decrease in corneal sensation with increasing severity of neuropathy assessed using NDS in the diabetic patients (r=0.414, P=0.000). Corneal nerve fibre density (P<0.001), branch density (P<0.001) and length (P<0.001) were significantly decreased whilst tortuosity (P<0.01) was increased in diabetic patients with increasing severity of diabetic neuropathy. Conclusion Utilising in vivo corneal confocal microscopy we have demonstrated increased LCs in diabetic patients particularly in the earlier phases of corneal nerve damage suggestive of an immune mediated contribution to corneal nerve damage in diabetes.
Resumo:
OBJECTIVE: The accurate quantification of human diabetic neuropathy is important to define at-risk patients, anticipate deterioration, and assess new therapies. ---------- RESEARCH DESIGN AND METHODS: A total of 101 diabetic patients and 17 age-matched control subjects underwent neurological evaluation, neurophysiology tests, quantitative sensory testing, and evaluation of corneal sensation and corneal nerve morphology using corneal confocal microscopy (CCM). ---------- RESULTS: Corneal sensation decreased significantly (P = 0.0001) with increasing neuropathic severity and correlated with the neuropathy disability score (NDS) (r = 0.441, P < 0.0001). Corneal nerve fiber density (NFD) (P < 0.0001), nerve fiber length (NFL), (P < 0.0001), and nerve branch density (NBD) (P < 0.0001) decreased significantly with increasing neuropathic severity and correlated with NDS (NFD r = −0.475, P < 0.0001; NBD r = −0.511, P < 0.0001; and NFL r = −0.581, P < 0.0001). NBD and NFL demonstrated a significant and progressive reduction with worsening heat pain thresholds (P = 0.01). Receiver operating characteristic curve analysis for the diagnosis of neuropathy (NDS >3) defined an NFD of <27.8/mm2 with a sensitivity of 0.82 (95% CI 0.68–0.92) and specificity of 0.52 (0.40–0.64) and for detecting patients at risk of foot ulceration (NDS >6) defined a NFD cutoff of <20.8/mm2 with a sensitivity of 0.71 (0.42–0.92) and specificity of 0.64 (0.54–0.74). ---------- CONCLUSIONS: CCM is a noninvasive clinical technique that may be used to detect early nerve damage and stratify diabetic patients with increasing neuropathic severity. Established diabetic neuropathy leads to pain and foot ulceration. Detecting neuropathy early may allow intervention with treatments to slow or reverse this condition (1). Recent studies suggested that small unmyelinated C-fibers are damaged early in diabetic neuropathy (2–4) but can only be detected using invasive procedures such as sural nerve biopsy (4,5) or skin-punch biopsy (6–8). Our studies have shown that corneal confocal microscopy (CCM) can identify early small nerve fiber damage and accurately quantify the severity of diabetic neuropathy (9–11). We have also shown that CCM relates to intraepidermal nerve fiber loss (12) and a reduction in corneal sensitivity (13) and detects early nerve fiber regeneration after pancreas transplantation (14). Recently we have also shown that CCM detects nerve fiber damage in patients with Fabry disease (15) and idiopathic small fiber neuropathy (16) when results of electrophysiology tests and quantitative sensory testing (QST) are normal. In this study we assessed corneal sensitivity and corneal nerve morphology using CCM in diabetic patients stratified for the severity of diabetic neuropathy using neurological evaluation, electrophysiology tests, and QST. This enabled us to compare CCM and corneal esthesiometry with established tests of diabetic neuropathy and define their sensitivity and specificity to detect diabetic patients with early neuropathy and those at risk of foot ulceration.
Resumo:
Diabetic neuropathy is a significant clinical problem that currently has no effective therapy, and in advanced cases, leads to foot ulceration and lower limb amputation. The accurate detection, characterisation and quantification of this condition are important in order to define at-risk patients, anticipate deterioration, monitor progression and assess new therapies. This thesis evaluates novel corneal methods of assessing diabetic neuropathy. Over the past several years two new non-invasive corneal markers have emerged, and in cross-sectional studies have demonstrated their ability to stratify the severity of this disease. Corneal confocal microscopy (CCM) allows quantification of corneal nerve parameters and non-contact corneal aesthesiometry (NCCA), the presumed functional correlate of corneal structure, assesses the sensitivity of the cornea. Both these techniques are quick to perform, produce little or no discomfort for the patient, and with automatic analysis paradigms developed, are suitable for clinical settings. Each has advantages and disadvantages over established techniques for assessing diabetic neuropathy. New information is presented regarding measurement bias of CCM images, and a unique sampling paradigm and associated accuracy determination method of combinations is described. A novel high-speed corneal nerve mapping procedure has been developed and application of this procedure in individuals with neuropathy has revealed regions of sub-basal nerve plexus that dictate further evaluation, as they appear to show earlier signs of damage than the central region of the cornea that has to date been examined. The discriminative capacity of corneal sensitivity measured by NCCA is revealed to have reasonable potential as a marker of diabetic neuropathy. Application of these new corneal markers for longitudinal evaluation of diabetic neuropathy has the potential to reduce dependence on more invasive, costly, and time-consuming assessments, such as skin biopsy.
Resumo:
OBJECTIVE: : Acute traumatic coagulopathy occurs early in hemorrhagic trauma and is a major contributor to mortality and morbidity. Our aim was to examine the effect of small-volume 7.5% NaCl adenocaine (adenosine and lidocaine, adenocaine) and Mg on hypotensive resuscitation and coagulopathy in the rat model of severe hemorrhagic shock. DESIGN: : Prospective randomized laboratory investigation. SUBJECTS: : A total of 68 male Sprague Dawley Rats. INTERVENTION: : Post-hemorrhagic shock treatment for acute traumatic coagulopathy. MEASUREMENTS AND METHODS: : Nonheparinized male Sprague-Dawley rats (300-450 g, n = 68) were randomly assigned to either: 1) untreated; 2) 7.5% NaCl; 3) 7.5% NaCl adenocaine; 4) 7.5% NaCl Mg; or 5) 7.5% NaCl adenocaine/Mg. Hemorrhagic shock was induced by phlebotomy to mean arterial pressure of 35-40 mm Hg for 20 mins (~40% blood loss), and animals were left in shock for 60 mins. Bolus (0.3 mL) was injected into the femoral vein and hemodynamics monitored. Blood was collected in Na citrate (3.2%) tubes, centrifuged, and the plasma snap frozen in liquid N2 and stored at -80°C. Coagulation was assessed using activated partial thromboplastin times and prothrombin times. RESULTS: : Small-volume 7.5% NaCl adenocaine and 7.5% NaCl adenocaine/Mg were the only two groups that gradually increased mean arterial pressure 1.6-fold from 38-39 mm Hg to 52 and 64 mm Hg, respectively, at 60 mins (p < .05). Baseline plasma activated partial thromboplastin time was 17 ± 0.5 secs and increased to 63 ± 21 secs after bleeding time, and 217 ± 32 secs after 60-min shock. At 60-min resuscitation, activated partial thromboplastin time values for untreated, 7.5% NaCl, 7.5% NaCl/Mg, and 7.5% NaCl adenocaine rats were 269 ± 31 secs, 262 ± 38 secs, 150 ± 43 secs, and 244 ± 38 secs, respectively. In contrast, activated partial thromboplastin time for 7.5% NaCl adenocaine/Mg was 24 ± 2 secs (p < .05). Baseline prothrombin time was 28 ± 0.8 secs (n = 8) and followed a similar pattern of correction. CONCLUSIONS: : Plasma activated partial thromboplastin time and prothrombin time increased over 10-fold during the bleed and shock periods prior to resuscitation, and a small-volume (~1 mL/kg) IV bolus of 7.5% NaCl AL/Mg was the only treatment group that raised mean arterial pressure into the permissive range and returned activated partial thromboplastin time and prothrombin time clotting times to baseline at 60 mins.
Resumo:
HRTEM has been used to examine illite/smectite from the Mancos shale, rectorite from Garland County, Arkansas; illite from Silver Hill, Montana; Na-smectite from Crook County, Wyoming; corrensite from Packwood, Washington; and diagenetic chlorite from the Tuscaloosa formation. Thin specimens were prepared by ion milling, ultra-microtome sectioning and/or grain dispersal on a porous carbon substrate. Some smectite-bearing clays were also examined after intercalation with dodecylamine hydrochloride (DH). Intercalation of smectite with DH proved to be a reliable method of HRTEM imaging of expanded smectite, d(001) 16 A which could then be distinguished from unexpanded illite, d(001) 10 A. Lattice fringes of basal spacings of DH-intercalated rectorite and illite/smectite showed 26 A periodicity. These data support XRD studies which suggest that these samples are ordered, interstratified varieties of illite and smectite. The ion-thinned, unexpanded corrensite sample showed discrete crystallites containing 10 A and 14 A basal spacings corresponding with collapsed smectite and chlorite, respectively. Regions containing disordered layers of chlorite and smectite were also noted. Crystallites containing regular alternations of smectite and chlorite were not common. These HRTEM observations of corrensite did not corroborate XRD data. Particle sizes parallel to the c axis ranged widely for each sample studied, and many particles showed basal dimensions equivalent to > five layers. -J.M.H.
Resumo:
This paper presents a comprehensive formal security framework for key derivation functions (KDF). The major security goal for a KDF is to produce cryptographic keys from a private seed value where the derived cryptographic keys are indistinguishable from random binary strings. We form a framework of five security models for KDFs. This consists of four security models that we propose: Known Public Inputs Attack (KPM, KPS), Adaptive Chosen Context Information Attack (CCM) and Adaptive Chosen Public Inputs Attack(CPM); and another security model, previously defined by Krawczyk [6], which we refer to as Adaptive Chosen Context Information Attack(CCS). These security models are simulated using an indistinguisibility game. In addition we prove the relationships between these five security models and analyse KDFs using the framework (in the random oracle model).
Resumo:
Diabetic neuropathy is associated with increased morbidity and mortality. To date, limited data in subjects with impaired glucose tolerance and diabetes demonstrate nerve fiber repair after intervention. This may reflect a lack of efficacy of the interventions but may also reflect difficulty of the tests currently deployed to adequately assess nerve fiber repair, particularly in short-term studies. Corneal confocal microscopy (CCM) represents a novel noninvasive means to quantify nerve fiber damage and repair. Fifteen type 1 diabetic patients undergoing simultaneous pancreas-kidney transplantation (SPK) underwent detailed assessment of neurologic deficits, quantitative sensory testing (QST), electrophysiology, skin biopsy, corneal sensitivity, and CCM at baseline and at 6 and 12 months after successful SPK. At baseline, diabetic patients had a significant neuropathy compared with control subjects. After successful SPK there was no significant change in neurologic impairment, neurophysiology, QST, corneal sensitivity, and intraepidermal nerve fiber density (IENFD). However, CCM demonstrated significant improvements in corneal nerve fiber density, branch density, and length at 12 months. Normalization of glycemia after SPK shows no significant improvement in neuropathy assessed by the neurologic deficits, QST, electrophysiology, and IENFD. However, CCM shows a significant improvement in nerve morphology, providing a novel noninvasive means to establish early nerve repair that is missed by currently advocated assessment techniques.
Resumo:
Background and aims: The assessment of intra-epidermal nerve fiber density (IENFD) in skin biopsies and corneal nerve fiber density (CNFD) using corneal confocal microscopy (CCM) provides promising techniques to detect small nerve fiber damage in patients with peripheral neuropathy. To help define the clinical utility of each of these techniques in patients with diabetic neuropathy we have assessed sensitivity and specificity of IENFD and CNFD in predicting the following: 1) diabetic polyneuropathy (DPN); 2) risk of foot ulceration (RFU); 3) initial small fiber neuropathy (iSFN); 4) severe small fiber neuropathy (sSFN)...
Resumo:
Purpose Corneal confocal microscopy (CCM) is a rapid non-invasive ophthalmic technique, which has been shown to diagnose and stratify the severity of diabetic neuropathy. Current morphometric techniques assess individual static images of the subbasal nerve plexus; this work explores the potential for non-invasive assessment of the wide-field morphology and dynamic changes of this plexus in vivo. Methods In this pilot study, laser scanning CCM was used to acquire maps (using a dynamic fixation target and semi-automated tiling software) of the central corneal sub-basal nerve plexus in 4 diabetic patients with and 6 without neuropathy and in 2 control subjects. Nerve migration was measured in an additional 7 diabetic patients with neuropathy, 4 without neuropathy and in 2 control subjects by repeating a modified version of the mapping procedure within 2-8 weeks, thus facilitating re-identification of distinctive nerve landmarks in the 2 montages. The rate of nerve movement was determined from these data and normalised to a weekly rate (µm/week), using customised software. Results Wide-field corneal nerve fibre length correlated significantly with the Neuropathy Disability Score (r = -0.58, p < 0.05), vibration perception (r = -0.66, p < 0.05) and peroneal conduction velocity (r = 0.67, p < 0.05). Central corneal nerve fibre length did not correlate with any of these measures of neuropathy (p > 0.05 for all). The rate of corneal nerve migration was 14.3 ± 1.1 µm/week in diabetic patients with neuropathy, 19.7 ± 13.3µm/week in diabetic patients without neuropathy, and 24.4 ± 9.8µm/week in control subjects; however, these differences were not significantly different (p = 0.543). Conclusions Our data demonstrate that it is possible to capture wide-field images of the corneal nerve plexus, and to quantify the rate of corneal nerve migration by repeating this procedure over a number of weeks. Further studies on larger sample sizes are required to determine the utility of this approach for the diagnosis and monitoring of diabetic neuropathy.
Resumo:
Introduction: Diabetes has traditionally been managed as a single chronic disease state, but it exists with co-morbidities such as depression and metabolic syndrome. Treatment is multifaceted, requiring both primary and secondary care, however, the delivery of diabetes care is often fragmented. Integrated chronic disease management is a growing model of interest, and is underpinned by the chronic care model (CCM), devised as a guide for primary care management of patients with chronic conditions. The model identifies six key elements for effective care, and has shown promise in improving the management of diabetes. Aim: To find empirical evidence of integrated care interventions targeted at co-morbidities including diabetes, across primary/secondary care. Method: A systematic review of peer reviewed literature from PubMed, CINAHL, Embase, Cochrane Library and Joanna Briggs was performed. Studies were reviewed according to inclusion criteria- studies published in English, between 2004-2014, empirical studies, studies with evidence of primary/secondary implementation, and those dealing with chronic co-morbid disease states. Results: 51 studies met the inclusion criteria. Included studies were mostly from the US (38), with five from Australia, UK (2), Canada (2), Netherlands (1), Norway (1), Ireland (1), and one multi-country study. It was found that all interventions adopted at least one (average 3-4) of the chronic care model, with the majority implementing delivery system redesign activities within the primary care practice/s. We found evidence of interventions which significantly reduced emergency department and hospital admissions, improved processes of care, patient health outcomes such as HbA1c, improved patient satisfaction, and reduced costs. Conclusion/Implications for practice: Diabetes exists as a co-morbid disease, requiring both primary and secondary care. We found that integrated care interventions adopting elements of the chronic care model positively impacted on patient outcomes, service utilisation, as well as costs. This review has highlighted that it may not be necessary to adopt all CCM elements to improve clinical outcomes, patient satisfaction and costs.