145 resultados para intramolecular hydrogen bonding
Resumo:
In the structure of the title complex [Cs(C8H4Cl3O2)(H2O)]n, the Cs salt of the commercial herbicide fenac [(2,3,6-trichlorophenyl)acetic acid], the irregular eight-coordination about Cs+ comprises a bidentate chelate (O:Cl) interaction involving a carboxyl O-atom and an ortho-related ring substituted Cl atom which is also bridging, a triple-bridging carboxyl O-atom and a bridging water molecule. A two-dimensional sheet polymer is generated, lying parallel to (100), within which there are water O---H...O(carboxyl) hydrogen-bonding interactions.
Resumo:
In the structure of the title complex [Cs(C7H4N2O2)(H2O)2]n, the Cs salt of 4-nitrobenzoic acid, the irregular CsO9 coordination sphere comprises three bridging nitro O-donors, a bidentate carboxyl (O,O')-chelate interaction, a triple-bridging water molecule and a monodentate water molecule. A three-dimensional framework polymer is generated, within which there are water O-H...Ocarboxyl and water O-H...O(water) hydrogen-bonding interactions.
Resumo:
In the title compound, [K2(C7H3Cl2O2)2(H2O)]n, the potassium salt of 2,4-dichlorobenzoic acid, the repeating unit in the polymeric structure consists of two identical irregular KO6Cl complex units related by twofold rotational symmetry, linked by a bridging water molecule lying on the twofold axis. The coordination polyhedron about each K+ comprises a carboxyl O-atom and a Cl-atom donor from a bidentate chelate ligand interaction, four O-atom donors from a doubly bridging bidentate carboxyl (O,O')-chelate interaction and the water molecule. A two-dimensional layered coordination polymer structure lying parallel to (100) is generated through a series of conjoined cyclic bridges between K centres and is stabilized by water O-H...O(carboxyl) hydrogen-bonding interactions.
Resumo:
In the title p-toluenesulfonate salt of the drug dapsone, C12H13N2O2S+ C7H7O3S-, the dihedral angle between the two aromatic rings of the dapsone monocation is 70.19(17)deg. and those between these rings and that of the p-toluenesulfonate anion are 72.34(17) and 46.43(17)deg. All amine and aminium H-atoms are involved in intermolecular N-H...O hydrogen-bonding associations with sulfonyl O-atom acceptors as well as one of the sulfone O-atoms, giving a three-dimensional structure.
Resumo:
In the structure of title compound [Rb2(C7H5N2O4)2(H2O)2]n the asymmetric unit comprises two independent and different seven-coordinate Rb centres, one RbO7, the other RbO6N, with both having irregular stereochemistry. The RbO7 coordination comprises bridging oxygen donors from two water molecules, three carboxylate groups, and a nitro group, with one doubly bridging. The RbO6N coordination comprises the two bridging water molecules, one monodentate amine N donor, one carboxyl O donor and three O donors from nitro groups (one from the chelate bridge). The extension of the dinuclear unit gives a three-dimensional polymeric structure which is stabilized by both intra- and intermolecular amine N-H...O and water O-H...O hydrogen bonds to carboxyl and water O-atom acceptors, as well as a number of inter-ring \p--\p interactions [minimum ring centroid separation, 3.364(2) \%A]. This complex is both isostructural with the analogous Cs -nitroanthranilate monohydrate complex.
Resumo:
The structures of the compounds from the reaction of the drug dapsone [4-(4-aminophenylsulfonyl)aniline] with 3,5-dinitrosalicylic acid, the salt hydrate [4-(4-aminohenylsulfonyl)anilinium 2-carboxy-4,6-dinitrophenolate monohydrate] (1) and the 1:1 adduct with 5-nitroisophthalic acid [4-(4-aminophenylsulfonyl)aniline 5-nitrobenzene-1,3-dicarboxylic acid] (2) have been determined. Crystals of 1 are triclinic, space group P-1, with unit cell dimensions a = 8.2043(3), b = 11.4000(6), c = 11.8261(6)Å, α = 110.891(5), β = 91.927(3), γ = 98.590(4)deg. and Z = 4. Compound 2 is orthorhombic, space group Pbcn, with unit cell dimensions a = 20.2662(6), b = 12.7161(4), c = 15.9423(5)Å and Z = 8. In 1, intermolecular analinium N-H…O and water O-H…O and O-H…N hydrogen-bonding interactions with sulfone, carboxyl, phenolate and nitro O-atom and aniline N-atom acceptors give a two-dimensional layered structure. With 2, the intermolecular interactions involve both aniline N-H…O and carboxylic acid O-H…O and O-H…N hydrogen bonds to sulfone, carboxyl, nitro and aniline acceptors, giving a three-dimensional network structure. In both structures π--π aromatic ring associations are present.
Resumo:
The structures of the hydrated sodium salts of 4-chloro-3-nitrobenzoic acid {poly[aqua(μ4-4-chloro-3-nitrobenzoato)sodium(I)], [Na(C7H3ClNO4)(H2O)]n, (I)} and 2-amino-4-nitrobenzoic acid {poly[μ-aqua-aqua(μ3-2-amino-4-nitrobenzoato)sodium(I)], [Na(C7H5N2O4)(H2O)2]n, (II)}, and the hydrated potassium salt of 2-amino-4-nitrobenzoic acid {poly[μ-aqua-aqua(μ5-2-amino-4-nitrobenzoato)potassium(I)], [K(C7H5N2O4)(H2O)]n, (III)} have been determined and their complex polymeric structures described. All three structures are stabilized by intra- and intermolecular hydrogen bonding and strong π–π ring interactions. In the structure of (I), the distorted trigonal bipyrimidal NaO5 coordination polyhedron comprises a monodentate water molecule and four bridging carboxylate O-atom donors, generating a two-dimensional polymeric structure lying parallel to (001). Intra-layer hydrogen-bonding associations and strong inter-ring π–π interactions are present. Structure (II) has a distorted octahedral NaO6 stereochemistry, with four bridging O-atom donors, two from a single carboxylate group and two from a single nitro group and three from the two water molecules, one of which is bridging. Na centres are linked through centrosymmetric four-membered duplex water bridges and through 18-membered duplex head-to-tail ligand bridges. Similar centrosymmetric bridges are found in the structure of (III), and in both (II) and (III) strong inter-ring π–π interactions are found. A two-dimensional layered structure lying parallel to (010) is generated in (II), whereas in (III) the structure is three-dimensional. With (III), the irregular KO7 coordination polyhedron comprises a doubly bridging water molecule, a single bidentate bridging carboxylate O-atom donor and three bridging O-atom donors from the two nitro groups. A three-dimensional structure is generated. These coordination polymer structures are among the few examples of metal complexes of any type with either 4-chloro-3-nitrobenzoic acid or 4-nitroanthranilic acid.
Resumo:
We report the synthesis, structure and properties of [2]rotaxanes prepared by the assembly of benzylic amide macrocycles around a series of amide and sulfide-/sulfoxide-/sulfone-containing threads. The efficacy of rotaxane formation is related to the hydrogen bond accepting properties of the various sulfur-containing functional groups in the thread, with the highest yields (up to 63% with a rigid vinyl spacer in the template site) obtained for sulfoxide rotaxanes. X-Ray crystallography of a sulfoxide rotaxane, 5, shows that the macrocycle adopts a highly symmetrical chair-like conformation in the solid state, with short hydrogen bonds between the macrocycle isophthalamide NH-protons and the amide carbonyl and sulfoxide S-O of the thread. In contrast, in the X-ray crystal structures of the analogous sulfide (4) and sulfone (6) rotaxanes the macrocycle adopts boat-like conformations with long intercomponent NH…O=SO and NH…S hydrogen bonds (in addition to several intercomponent amide-amide hydrogen bonds). Taking advantage of the different hydrogen bonding modes of the sulfur-based functional groups, a switchable molecular shuttle was prepared in which the oxidation level of sulfur determines the position of the macrocycle on the thread.
Resumo:
In this work we have studied the mineral dawsonite by using a combination of scanning electron microscopy with EDS and vibrational spectroscopy. Single crystals show an acicular habitus forming aggregates with a rosette shape. The chemical analysis shows a phase composed of C, Al, and Na. Two distinct Raman bands at 1091 and 1068 cm−1 are assigned to the CO32− ν1 symmetric stretching mode. Multiple bands are observed in both the Raman and infrared spectra in the antisymmetric stretching and bending regions showing that the symmetry of the carbonate anion is reduced and in all probability the carbonate anions are not equivalent in the dawsonite structure. Multiple OH deformation vibrations centred upon 950 cm−1 in both the Raman and infrared spectra show that the OH units in the dawsonite structure are non-equivalent. Raman bands observed at 3250, 3283 and 3295 cm−1 are assigned to OH stretching vibrations. The position of these bands indicates strong hydrogen bonding of the OH units in the dawsonite structure. The formation of the mineral dawsonite has the potential to offer a mechanism for the geosequestration of greenhouse gases.
Resumo:
In the structure of the title magnesium complex with the phenoxy herbicide (2,4-dichlorophenoxy)acetic acid (2,4-D), [Mg(H2O)5(C8H5Cl2O3)]+ C8H5Cl2O3)- . 0.5H2O, the discrete cationic MgO6 complex units comprise a carboxyl O-donor from a monodentate 2,4-D cationic ligand and five water molecules in a slightly distorted octahedral coordination. The 2,4-D anions are linked to the complex units through duplex water O-H...O(carboxyl) hydrogen bonds through the coordinated water molecules. In the crystal inter-unit O-H...O hydrogen-bonding interactions involving coordinated water molecules as well as the hemi-hydrate solvate molecule with carboxyl O-atom acceptors, give a two-dimensional layered structure lying parallel (001), in which pi-pi ligand-cation interactions [minimum ring centroid separation, 3.6405(17)A] and a short O-H...Cl interaction [3.345(2)A] are also found.
Resumo:
The structures of the 1:1 co-crystalline adduct C8H6BrN3S . C7H5NO4 (I) and the salt C8H7BrN3S+ C7H3N2O7- (II) from the interaction of 5-(4-bromophenyl)-1,3,4-thiadiazol-2-amine with 4-nitrobenzoic acid and 3,5-dinitrosalicylic acid, respectively, have been determined. The primary inter-species association in both (I) and (II) is through duplex R2/2(8) (N-H...O/O-H...O) or (N-H...O/N-H...O) hydrogen bonds, respectively, giving heterodimers. In (II), these are close to planar [dihedral angles between the thiadiazole ring and the two phenyl rings are 2.1(3)deg. (intra) and 9.8(2)deg. (inter)], while in (I) these angles are 22.11(15) and 26.08(18)deg., respectively. In the crystal of (I), the heterodimers are extended into a one-dimensional chain along b through an amine N-...N(thiadiazole) hydrogen bond but in (II), a centrosymmetric cyclic heterotetramer structure is generated through N-H...O hydrogen bonds to phenol and nitro O-atom acceptors and features, together with the primary R2/2(8) interaction, conjoined R4/6(12), R2/1(6) and S(6) ring motifs. Also present in (I) are pi--pi interactions between thiadiazole rings [minimum ring centroid separation, 3.4624(16)deg.] as well as short Br...O(nitro) interactions in both (I) and (II) [3.296(3)A and 3.104(3)A, respectively].
Resumo:
In the structure of the title compound, (C10H18N2)2+, 2(NO3)-, the nitrate salt of 4-(N,N-diethylamino)aniline, the two ethyl groups lie almost perpendicular to the plane of the benzene ring [ring to ethyl C-C-N-C torsion angles, -59.5(2) and 67.5(3)deg.]. The aminium groups of the cation form inter-species N-H...O hydrogen bonds with the nitro O-atoms of both anions giving one-dimensional chains extending along c and are extended into a two-dimensional network structure lying parallel to (010). Weak C-H...O hydrogen-bonding associations are also present.
Resumo:
Raman spectroscopy complimented with infrared spectroscopy has been used to study the molecular structure of the mineral of plumbophyllite. The Raman spectrum is dominated by a very intense sharp peak at 1027 cm−1, assigned to the SiO stretching vibrations of (SiO3)n units. A very intense Raman band at 643 cm−1 is assigned to the bending mode of (SiO3)n units. Raman bands observed at 3215, 3443, 3470, 3494 and 3567 cm−1 are assigned to water stretching vibrations. Multiple water stretching and bending modes are observed showing that there is much variation in hydrogen bonding between water and the silicate surfaces. Because of the close similarity in the structure of plumbophyllite and apophyllite, a comparison of the spectra with that of apophyllites is made. By using vibrational spectroscopy an assessment of the molecular structure of plumbophyllite has been made.
Resumo:
The mineral ushkovite has been analyzed using a combination of electron microscopy with EDX and vibrational spectroscopy. Chemical analysis shows the mineral contains P, Mg with very minor Fe. Thus, the formula of the studied ushkovite is Mg32+(PO4)2·8H2O. The Raman spectrum shows an intense band at 953 cm−1 assigned to the ν1 symmetric stretching mode. In the infrared spectra complexity exists with multiple antisymmetric stretching vibrations observed, due to the reduced tetrahedral symmetry. This loss of degeneracy is also reflected in the bending modes. Strong infrared bands around 827 cm−1 are attributed to water librational modes. The Raman spectra of the hydroxyl-stretching region are complex with overlapping broad bands. Hydroxyl stretching vibrations are identified at 2881, 2998, 3107, 3203, 3284 and 3457 cm−1. The wavenumber band at 3457 cm−1 is attributed to the presence of FeOH groups. This complexity is reflected in the water HOH bending modes where a strong infrared band centered around 1653 cm−1 is found. Such a band reflects the strong hydrogen bonding of the water molecules to the phosphate anions in adjacent layers. Spectra show three distinct OH bending bands from strongly hydrogen-bonded, weakly hydrogen bonded water and non-hydrogen bonded water. Vibrational spectroscopy enhances our knowledge of the molecular structure of ushkovite.
Resumo:
The structures of the isomorphous potassium and rubidium polymeric coordination complexes with 4-nitrobenzoic acid, poly[mu2-aqua-aqua-mu3-(4-nitrobenzoato)-potassium], [K(C7H4N2O2)(H2O)2]n, (I) and poly[mu3-aqua-aqua-mu5-(4-nitrobenzoato)-rubidium], [Rb(C7H4N2O2)(H2O)2]n, (II) have been determined. In (I) the very distorted KO6 coordination sphere about the K+ centres in the repeat unit comprise two bridging nitro O-atom donors, a single bridging carboxyl O-atom donor and two water molecules, one of which is bridging. In the the Rb complex (II), the same basic MO6 coordination is found in the repeat unit but is expanded to RbO9 through a slight increase in the accepted Rb-O bond length range and includes an additional Rb-O(carboxyl) bond, completing a bidentate O,O'-chelate interaction, and additional bridging Rb-Onitro) and Rb-O(water) bonds. The comparative K-O and Rb-O bond length ranges are 2.738(3)-3.002(3)Ang. (I) and 2.884(2)-3.182(2)Ang. (II). The structure of (II) is also isomorphous as well as isostructural with the known structure of the nine-coordinate caesium 4-nitrobenzoate analogue, [Cs(C7H4N2O~2~)(H~2~O)2]n, (III) in which the Cs---O range is 3.047(4)-3.338(4)Ang. In all three complexes, common basic polymeric extensions are found, including two different centrosymmetric bridging interactions through both water and nitro groups as well as extensions along c through the p-related carboxyl group, giving a two-dimensional structure in (I). In (II) and (III), three-dimensional structures are generated through additional bridges through the nitro and water O-atoms. In all structures, both water molecules are involved in similar intra-polymer O-H...O hydrogen-bonding interactions to both carboxyl as well as water O-atom acceptors. A comparison of the varied coordination behaviour of the full set of Li-Cs salts with 4-nitrobenzoic acid is also made.