616 resultados para bone disease


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research has established, through ultrasound, near infrared spectroscopy and biomechanics experiments, parameters and parametric relationships that can form the framework for quantifying the integrity of the articular cartilage-on-bone laminate, and objectively distinguish between normal/healthy and abnormal/degenerated joint tissue, with a focus on articular cartilage. This has been achieved by: 1. using traditional experimental methods to produce new parameters for cartilage assessment; 2. using novel methodologies to develop new parameters; and 3. investigating the interrelationships between mechanical, structural and molec- ular properties to identify and select those parameters and methodologies that can be used in a future arthroscopic probe based on points 1 and 2. By combining the molecular, micro- and macro-structural characteristics of the tissue with its mechanical properties, we arrive at a set of critical benchmarking parameters for viable and early-stage non-viable cartilage. The interrelationships between these characteristics, examined using a multivariate analysis based on principal components analysis, multiple linear regression and general linear modeling, could then to deter- mine those parameters and relationships which have the potential to be developed into a future clinical device. Specifically, this research has found that the ultrasound and near infrared techniques can subsume the mechanical parameters and combine to characterise the tissue at the molecular, structural and mechanical levels over the full depth of the cartilage matrix. It is the opinion in this thesis that by enabling the determination of the precise area of in uence of a focal defect or disease in the joint, demarcating the boundaries of articular cartilage with dierent levels of degeneration around a focal defect, better surgical decisions that will advance the processes of joint management and treatment will be achieved. Providing the basis for a surgical tool, this research will contribute to the enhancement and quanti�cation of arthroscopic procedures, extending to post- treatment monitoring and as a research tool, will enable a robust method for evaluating developing (particularly focalised) treatments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bone generation by autogenous cell transplantation in combination with a biodegradable scaffold is one of the most promising techniques being developed in craniofacial surgery. The objective of this combined in vitro and in vivo study was to evaluate the morphology and osteogenic differentiation of bone marrow derived mesenchymal progenitor cells and calvarial osteoblasts in a two-dimensional (2-D) and three-dimensional (3-D) culture environment (Part I of this study) and their potential in combination with a biodegradable scaffold to reconstruct critical-size calvarial defects in an autologous animal model [Part II of this study; see Schantz, J.T., et al. Tissue Eng. 2003;9(Suppl. 1):S-127-S-139; this issue]. New Zealand White rabbits were used to isolate osteoblasts from calvarial bone chips and bone marrow stromal cells from iliac crest bone marrow aspirates. Multilineage differentiation potential was evaluated in a 2-D culture setting. After amplification, the cells were seeded within a fibrin matrix into a 3-D polycaprolactone (PCL) scaffold system. The constructs were cultured for up to 3 weeks in vitro and assayed for cell attachment and proliferation using phase-contrast light, confocal laser, and scanning electron microscopy and the MTS cell metabolic assay. Osteogenic differentiation was analyzed by determining the expression of alkaline phosphatase (ALP) and osteocalcin. The bone marrow-derived progenitor cells demonstrated the potential to be induced to the osteogenic, adipogenic, and chondrogenic pathways. In a 3-D environment, cell-seeded PCL scaffolds evaluated by confocal laser microscopy revealed continuous cell proliferation and homogeneous cell distribution within the PCL scaffolds. On osteogenic induction mesenchymal progenitor cells (12 U/L) produce significantly higher (p < 0.05) ALP activity than do osteoblasts (2 U/L); however, no significant differences were found in osteocalcin expression. In conclusion, this study showed that the combination of a mechanically stable synthetic framework (PCL scaffolds) and a biomimetic hydrogel (fibrin glue) provides a potential matrix for bone tissue-engineering applications. Comparison of osteogenic differentiation between the two mesenchymal cell sources revealed a similar pattern.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many farmers in South and Southeast Asia describe rice tungro disease as a cancer disease because of the severe damage it causes and the difficulty of controlling it (121). As the most important of the 14 rice viral diseases, tungro was first recognized as a leafhopper-transmitted virus disease in 1963 (88). However, tungro, which means “degenerated growth” in a Filipino dialect, has a much longer history. It is almost certain that tungro was responsible for a disease outbreak that occurred in 1859 in Indonesia, which was referred to at the time as mentek (83). In the past, a variety of names has been given to tungro, including accep na pula in the Philippines, penyakit merah in Malaysia, and yelloworange leaf in Thailand (83).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Computer aided technologies, medical imaging, and rapid prototyping has created new possibilities in biomedical engineering. The systematic variation of scaffold architecture as well as the mineralization inside a scaffold/bone construct can be studied using computer imaging technology and CAD/CAM and micro computed tomography (CT). In this paper, the potential of combining these technologies has been exploited in the study of scaffolds and osteochondral repair. Porosity, surface area per unit volume and the degree of interconnectivity were evaluated through imaging and computer aided manipulation of the scaffold scan data. For the osteochondral model, the spatial distribution and the degree of bone regeneration were evaluated. In this study the versatility of two softwares Mimics (Materialize), CTan and 3D realistic visualization (Skyscan) were assessed, too.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tissue engineering allows the design of functionally active cells within supportive bio-scaffolds to promote the development of new tissues such as cartilage and bone for the restoration of pathologically altered tissues. However, all bone tissue engineering applications are limited by a shortage of stem cells. The adult bone marrow stroma contains a subset of nonhematopoietic cells referred to as bone marrow mesenchymal stem cells (BMSCs). BMSCs are of interest because they are easily isolated from a small aspirate of bone marrow and readily generate single- cell-derived colonies. These cells have the capacity to undergo extensive replication in an undifferentiated state ex vivo. In addition, BMSCs have the potential to develop either in vitro or in vivo into distinct mesenchymal tissues, including bone, cartilage, fat, tendon, muscle, and marrow stroma. Thus, BMSCs are an attractive cell source for tissue engineering approaches. However, BMSCs are not homo- geneous and the quantity of stem cells decreases in the bone marrow in aged population. A sequential loss of lineage differentiation potential has been found in the mixed culture of bone marrow stromal cells due to a heterogenous popu- lation. Therefore, a number of studies have proposed that homogenous bone marrow stem cells can be generated from clonal culture of bone marrow cells and that BMSC clones have the greatest potential for the application of bone regeneration in vivo

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cell-cell and cell-matrix interactions play a major role in tumor morphogenesis and cancer metastasis. Therefore, it is crucial to create a model with a biomimetic microenvironment that allows such interactions to fully represent the pathophysiology of a disease for an in vitro study. This is achievable by using three-dimensional (3D) models instead of conventional two-dimensional (2D) cultures with the aid of tissue engineering technology. We are now able to better address the complex intercellular interactions underlying prostate cancer (CaP) bone metastasis through such models. In this study, we assessed the interaction of CaP cells and human osteoblasts (hOBs) within a tissue engineered bone (TEB) construct. Consistent with other in vivo studies, our findings show that intercellular and CaP cell-bone matrix interactions lead to elevated levels of matrix metalloproteinases, steroidogenic enzymes and the CaP biomarker, prostate specific antigen (PSA); all associated with CaP metastasis. Hence, it highlights the physiological relevance of this model. We believe that this model will provide new insights for understanding of the previously poorly understood molecular mechanisms of bone metastasis, which will foster further translational studies, and ultimately offer a potential tool for drug screening. © 2010 Landes Bioscience.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The treatment of challenging fractures and large osseous defects presents a formidable problem for orthopaedic surgeons. Tissue engineering/regenerative medicine approaches seek to solve this problem by delivering osteogenic signals within scaffolding biomaterials. In this study, we introduce a hybrid growth factor delivery system that consists of an electrospun nanofiber mesh tube for guiding bone regeneration combined with peptide-modified alginate hydrogel injected inside the tube for sustained growth factor release. We tested the ability of this system to deliver recombinant bone morphogenetic protein-2 (rhBMP-2) for the repair of critically-sized segmental bone defects in a rat model. Longitudinal [mu]-CT analysis and torsional testing provided quantitative assessment of bone regeneration. Our results indicate that the hybrid delivery system resulted in consistent bony bridging of the challenging bone defects. However, in the absence of rhBMP-2, the use of nanofiber mesh tube and alginate did not result in substantial bone formation. Perforations in the nanofiber mesh accelerated the rhBMP-2 mediated bone repair, and resulted in functional restoration of the regenerated bone. [mu]-CT based angiography indicated that perforations did not significantly affect the revascularization of defects, suggesting that some other interaction with the tissue surrounding the defect such as improved infiltration of osteoprogenitor cells contributed to the observed differences in repair. Overall, our results indicate that the hybrid alginate/nanofiber mesh system is a promising growth factor delivery strategy for the repair of challenging bone injuries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mesenchymal Stem Cells (MSC) are frequently incorporated into osteochondral implants and cell seeding is often facilitated with hydrogels which exert a profound influence on the chondrogenic differentiation of MSC. An attempt was made to elucidate this effect by comparing the chondrogenic differentiation of Bone Marrow Stromal Cells (BMSC) in fibrin and fibrin alginate composites. A biphasic osteochondral model which simulated the native in vivo environment was employed in the study. In the first stage of the experiment, BMSC was encapsulated in fibrin, Fibrin Alginate 0.3% (FA0.3) and 0.6% (FA0.6). Chondrogenic differentiation within these cell-hydrogel pellets was compared against that of standard cell pellets under inductive conditions and the matrices which supported chondrogenesis were used in the cartilage phase of biphasic constructs. Neo-cartilage growth was monitored in these cocultures. It was observed that hydrogel encapsulation influenced mesenchymal condensation which preceded chondrogenic differentiation. Early cell agglomeration was observed in fibrin as compared to fibrin alginate composites. These fibrin encapsulated cells differentiated into chondrocytes which secreted aggrecan and collagen II. When the alginate content rose from 0.3 to 0.6%, chondrogenic differentiation declined with a reduction in the expression of collagen II and aggrecan. Fibrin and FA0.3 were tested in the cartilage phase of the biphasic osteochondral constructs and the former supported superior cartilage growth with higher cellularity, total Glycosaminoglycan (GAG) and collagen II levels. The FA0.3 cartilage phase was found to be fragmented and partially calcified. The use of fibrin for cartilage repair was advocated as it facilitated BMSC chondrogenesis and cartilaginous growth in an osteochondral environment.