182 resultados para Magneto-optics
Resumo:
A pitfall is an unapparent source of trouble or danger; a hidden hazard: Today we all face, or will soon be facing ecological pitfalls of many kinds. ‘Pitfall’ is a continually-evolving artwork built from multiple screens, a tabletop landscape mapped with projections, fibre optics, 3D spatial sound and infrared night imagery. It builds upon ideas, recordings and cross-disciplinary processes developed during my 2012-13 ANAT Synapse Art-Science residency, with the Australian Wildlife Conservancy (AWC), Australia’s largest private-sector conservation organisation.
Resumo:
The Re-introduction Project began with an art-science research residency in 2012, funded through the Australian 'Synapse' art-science residency program. It was developed in partnership with the Australian Wildlife Conservancy, Australia's largest private conservation agency and their South-East regional scientist Matt Hayward and conducted through a series of seven high intensity field-trips to AWC’s remote properties in VIC, NSW and SA. These trips coincided with key times at which the AWC’s mobile scientific teams were undertaking intensive scientific activities. The program coincided with specific events that senior scientist collaborator Dr Matt Hayward led in 2012 at Mallee Regions (Yookamurra, Scotia and Buckaringa), Lake Eyre Basin (Kalamurina) and Sydney (North Head). The initial outcome of the project was the work Pitfall (An Opportunistic Survey) - a new media installation created in light, media, object, text and sound presented near the AWC headquarters at Mildura in far NW Victoria. Pitfall built upon ideas and cross disciplinary processes developed during this residency/collaboration with Australian Wildlife Conservancy inspired by working with their ecological scientists during pitfall-trap survey events used to survey small mammals and invertebrates. ‘Pitfall’ was designed in response to a playful survey that I asked the AWC scientists to engage with around ideas of avoiding ecological pitfalls into the future. This continually-evolving artwork was built from multiple screens, a tabletop landscape mapped with projections, fibre optics, 3D spatial sound and infrared night imagery.
Resumo:
PURPOSE To investigate changes in the characteristics of the corneal optics, total optics, anterior biometrics and axial length of the eye during a near task, in downward gaze, over 10 min. METHODS Ten emmetropes (mean - 0.14 ± 0.24 DS) and 10 myopes (mean - 2.26 ± 1.42 DS) aged from 18 to 30 years were recruited. To measure ocular biometrics and corneal topography in downward gaze, an optical biometer (Lenstar LS900) and a rotating Scheimpflug camera (Pentacam HR) were inclined on a custom built, height and tilt adjustable table. The total optics of the eye were measured in downward gaze with binocular fixation using a modified Shack-Hartmann wavefront sensor. Initially, subjects performed a distance viewing task at primary gaze for 10 min to provide a "wash-out" period for prior visual tasks. A distance task (watching video at 6 m) in downward gaze (25°) and a near task (watching video on a portable LCD screen with 2.5 D accommodation demand) in primary gaze and 25°downward gaze were then carried out, each for 10 min in a randomized order. During measurements, in dichoptic view, a Maltese cross was fixated with the right (untested) eye and the instrument’s fixation target was fixated with the subject’s tested left eye. Immediately after (0 min), 5 and 10 min from the commencement of each trial, measurements of ocular parameters were acquired in downward gaze. RESULTS Axial length exhibited a significant increase with downward gaze and accommodation over time (p<0.05). The greatest axial elongation was observed in downward gaze with 2.5 D accommodation after 10 min (mean change from baseline 23±3 µm). Downward gaze also caused greater changes in anterior chamber depth (ACD) and lens thickness (LT) with accommodation (ACD mean change -163±12µm at 10 min; LT mean change 173±17 µm at 10 min) compared to primary gaze with accommodation (ACD mean change -138±12µm at 10 min; LT mean change 131±15 µm at 10 min). Both corneal power and total ocular power changed by a small but significant amount with downward gaze (p<0.05), resulting in a myopic shift (~0.10 D) in the spherical power of the eye compared with primary gaze. CONCLUSION The axial length, anterior biometrics and ocular refraction change significantly with accommodation in downward gaze as a function of time. These findings provide new insights into the optical and bio-mechanical changes of the eye during typical near tasks.
Resumo:
We investigated the effects of handling and fixation processes on the two-photon fluorescence spectroscopy of endogenous fluorophors in mouse skeletal muscle. The skeletal muscle was handled in one of two ways: either sectioned without storage or sectioned following storage in a freezer. The two-photon fluorescence spectra measured for different storage or fixation periods show a differential among those samples that were stored in water or were fixed either in formalin or methanol. The spectroscopic results indicate that formalin was the least disruptive fixative, having only a weak effect on the two-photon fluorescence spectroscopy of muscle tissue, whereas methanol had a significant influence on one of the autofluorescence peaks. The two handling processes yielded similar spectral information, indicating no different effects between them.
Resumo:
The dependence of second harmonic generation (SHG) from hyperplastic parenchyma and stroma in maligant human prostate tissue on excitation wavelengths was measured. A femtosecond pulsed laser, a scanning microscope and a spectrograph were used to perform the measurements. The spectra were measured under excitation power of 10 mW at excitation wavelengths of 730 nm, 750 nm, 800 nm, 850 nm and 890 nm. Analysis suggested that the SHG in prostate tissue is highly structured and wavelength dependent signifying its ability to be used as an indicator for recognizing tissue components, ultrastructures, micro-environments and diseases.
Resumo:
This report studies an algebraic equation whose solution gives the image system of a source of light as seen by an observer inside a reflecting spherical surface. The equation is looked at numerically using GeoGebra. Under the hypothesis that our galaxy is enveloped by a reflecting interface this becomes a possible model for many mysterious extra galactic observations.
Resumo:
In this paper the method of renormalization group (RG) [Phys. Rev. E 54, 376 (1996)] is related to the well-known approximations of Rytov and Born used in wave propagation in deterministic and random media. Certain problems in linear and nonlinear media are examined from the viewpoint of RG and compared with the literature on Born and Rytov approximations. It is found that the Rytov approximation forms a special case of the asymptotic expansion generated by the RG, and as such it gives a superior approximation to the exact solution compared with its Born counterpart. Analogous conclusions are reached for nonlinear equations with an intensity-dependent index of refraction where the RG recovers the exact solution. © 2008 Optical Society of America.
Resumo:
The term ‘plasmon’ was first coined in 1956 to describe collective electronic oscillations in solids which were very similar to electronic oscillations/surface waves in a plasma discharge (effectively the same formulae can be used to describe the frequencies of these physical phenomena). Surface waves originating in a plasma were initially considered to be just a tool for basic research, until they were successfully used for the generation of large-area plasmas for nanoscale materials synthesis and processing. To demonstrate the synergies between ‘plasmons’ and ‘plasmas’, these large-area plasmas can be used to make plasmonic nanostructures which functionally enhance a range of emerging devices. The incorporation of plasma-fabricated metal-based nanostructures into plasmonic devices is the missing link needed to bridge not only surface waves from traditional plasma physics and surface plasmons from optics, but also, more topically, macroscopic gaseous and nanoscale metal plasmas. This article first presents a brief review of surface waves and surface plasmons, then describe how these areas of research may be linked through Plasma Nanoscience showing, by closely looking at the essential physics as well as current and future applications, how everything old, is new, once again.
Resumo:
We have demonstrated the nonlinear absorption at 532 nm wavelength in an Au semi-continuous film (SF) resulting from smearing of the Fermi distribution and diffusion of conduction electrons into the substrate. The Au SF was irradiated by a pulsed laser with 8 ns pulse width at 532 nm in near resonance with the interband transition of the Au. We determined the temperature increase in the SF for different intensities by electrical measurement. We calculated the temperature increase by using a 1D heat transport equation; comparing the results of the calculation with measured values for the temperature increase, revealed the nonlinear absorption in the Au SF. We employed this deviation from linear behaviour to determine the nonlinear absorption coefficient.
Resumo:
Plasma nanoscience is an emerging multidisciplinary research field at the cutting edge of a large number of disciplines including but not limited to physics and chemistry of plasmas and gas discharges, materials science, surface science, nanoscience and nanotechnology, solid-state physics, space physics and astrophysics, photonics, optics, plasmonics, spintronics, quantum information, physical chemistry, biomedical sciences and related engineering subjects. This paper examines the origin, progress and future perspectives of this research field driven by the global scientific and societal challenges. The future potential of plasma nanoscience to remain a highly topical area in the global research and technological agenda in the age of fundamental-level control for a sustainable future is assessed using a framework of the five Grand Challenges for Basic Energy Sciences recently mapped by the US Department of Energy. It is concluded that the ongoing research is very relevant and is expected to substantially expand to competitively contribute to the solution of all of these Grand Challenges. The approach to controlling energy and matter at nano- and subnanoscales is based on identifying the prevailing carriers and transfer mechanisms of the energy and matter at the spatial and temporal scales that are most relevant to any particular nanofabrication process. Strong accent is made on the competitive edge of the plasma-based nanotechnology in applications related to the major socio-economic issues (energy, food, water, health and environment) that are crucial for a sustainable development of humankind. Several important emerging topics, opportunities and multidisciplinary synergies for plasma nanoscience are highlighted. The main nanosafety issues are also discussed and the environment- and human health-friendly features of plasma-based nanotech are emphasized.
Resumo:
Recent research in the rapidly emerging field of plasmonics has shown the potential to significantly enhance light trapping inside thin-film solar cells by using metallic nanoparticles. In this article it is demonstrated the plasmon enhancement of optical absorption in amorphous silicon solar cells by using silver nanoparticles. Based on the analysis of the higher-order surface plasmon modes, it is shown how spectral positions of the surface plasmons affect the plasmonic enhancement of thin-film solar cells. By using the predictive 3D modeling, we investigate the effect of the higher-order modes on that enhancement. Finally, we suggest how to maximize the light trapping and optical absorption in the thin-film cell by optimizing the nanoparticle array parameters, which in turn can be used to fine tune the corresponding surface plasmon modes.
Resumo:
The results of theoretical investigations of two-channel waveguide modulator based on Surface Wave (SW) propagation are presented. The structure studied consists of two n-type semiconductor waveguide channels separated from each other by a dielectric gap and coated by a metal. The SW propagates at the semiconductor-metal interface across an external magnetic field which is parallel to the interface. An external dc voltage is applied to the metal surface of one channel to provide a small phase shift between two propagating modes. In a coupled mode approximation, two possible regimes of operation of the structure, namely as a directional coupler and as an electro-optical modulator, are considered. Our results suggest new applications in millimeter and submillimeter wave solid-state electronics and integrated optics.
Resumo:
Graphene has received great interest from researchers all over the world owing to its unique properties. Much of the excitement surrounding graphene is due to its remarkable properties and inherent quantum effects. These effects and properties make it a desirable material for the fabrication of new devices. Graphene has a plethora of potential uses including gas and molecular sensors, electronics, spintronics and optics [1-7]. Interestingly, some of these properties have been known about since before the material was even isolated due to a considerable amount of theoretical work and simulations. The material was to some extent a condensed matter modelers "toy" as it was used as a benchmark 2D material Graphene had been used for a long time as the fundamental building block of many other carbon structures...
Resumo:
Steady state entanglement in ensembles of harmonic oscillators with a common squeezed reservoir is studied. Under certain conditions the ensemble features genuine multipartite entanglement in the steady state. Several analytic results regarding the bipartite and multipartite entanglement properties of the system are derived. We also discuss a possible experimental implementation which may exhibit steady state genuine multipartite entanglement.
Resumo:
Commercial products using organic light emitting diode (OLED) display technology have begun to appear in cell phones, mp3 players and even televisions. One key area that has allowed and will allow for this technology to continue its ascension into the flat panel display and lighting markets is materials R and D. From this perspective, recent progress in cubic silsesquioxane (SSQ) based materials may provide some new advantageous properties well suited for OLEDs. In this feature article we provide an overview of recent progress in the synthesis, characterization and implementation of SSQ-based materials with properties well suited for application in solution processable organic/polymer electronics, specifically OLEDs.