387 resultados para Civil engineering work
Resumo:
between mid 2010 and early 2011, Queensland road related infrastructures were devastated by flood and cyclone related natural disasters. Responding to these recent events and in preparing for more regular and intense climate-change induced events in future, the Queensland Government is now reviewing how post-disaster road infrastructure recovery projects are planned and delivered. In particular, there is awareness that rebuilding such infrastructure need sustainable strategies across economic, environmental and social dimensions. A comprehensive sustainability assessment framework for pre and post disaster situations can minimize negative impact on our communities, economy and environment. This research is underway to develop a comprehensive sustainability element frame work for post disaster management in road infrastructures in Queensland, Australia. Analyzing the implications of disruption to transport network and associated services is an important part of preparing local and regional responses to the impacts of natural disasters. This research can contribute to strategic planning, management leading to safe, efficient and integrated transport system that supports sustainable economic, social and environmental outcomes in Queensland. Within this context, this paper provides an overview of the qualitative mixed-method research approach involving literature reviews and case studies to explore and evaluate a number of sustainability elements with a view to develop operational strategies for disaster recovery road projects.
Resumo:
Accelerating a project can be rewarding. The consequences, however, can be troublesome if productivity and quality are sacrificed for the sake of remaining ahead of schedule, such that the actual schedule benefits are often barely worth the effort. The tradeoffs and paths of schedule pressure and its causes and effects are often overlooked when schedule decisions are being made. This paper analyses the effects that schedule pressure has on construction performance, and focuses on tradeoffs in scheduling. A research framework has been developed using a causal diagram to illustrate the cause-and-effect analysis of schedule pressure. An empirical investigation has been performed by using survey data collected from 102 construction practitioners working in 38 construction sites in Singapore. The results of this survey data analysis indicate that advantages of increasing the pace of work—by working under schedule pressure—can be offset by losses in productivity and quality. The negative effects of schedule pressure arise mainly by working out of sequence, generating work defects, cutting corners, and losing the motivation to work. The adverse effects of schedule pressure can be minimized by scheduling construction activities realistically and planning them proactively, motivating workers, and by establishing an effective project coordination and communication mechanism.
Resumo:
This study explored the flexural performance of an innovative Hybrid Composite Floor Plate System (HCFPS), comprised of Polyurethane (PU) core, outer layers of Glass-fibre Reinforced Cement (GRC) and steel laminates at tensile regions, using experimental testing and Finite Element (FE) modelling. Bending and cyclic loading tests for the HCFPS panels and a comprehensive material testing program for component materials were carried out. HCFPS test panel exhibited ductile behaviour and flexural failure with a deflection ductility index of 4. FE models of HCFPS were developed using the program ABAQUS and validated with experimental results. The governing criteria of stiffness and flexural performance of HCFPS can be improved by enhancing the properties of component materials. HCFPS is 50-70% lighter in weight when compared to conventional floor systems. This study shows that HCFPS can be used for floor structures in commercial and residential buildings as an alternative to conventional steel concrete composite systems.
Resumo:
This paper characterises nitrogen and phosphorus wash-off processes on urban road surfaces to create fundamental knowledge to strengthen stormwater treatment design. The study outcomes confirmed that the composition of initially available nutrients in terms of their physical association with solids and chemical speciation determines the wash-off characteristics. Nitrogen and phosphorus wash-off processes are independent of land use, but there are notable differences. Nitrogen wash-off is a “source limiting” process while phosphorus wash-off is “transport limiting”. Additionally, a clear separation between nitrogen and phosphorus wash-off processes based on dissolved and particulate forms confirmed that the common approach of replicating nutrients wash-off based on solids wash-off could lead to misleading outcomes particularly in the case of nitrogen. Nitrogen is present primarily in dissolved and organic form and readily removed even by low intensity rainfall events, which is an important consideration for nitrogen removal targeted treatment design. In the case of phosphorus, phosphate constitutes the primary species in wash-off for the particle size fraction <75 µm, while other species are predominant in particle size range >75 µm. This means that phosphorus removal targeted treatment design should consider both phosphorus speciation as well as particle size.
Resumo:
Contractors have to bid competitively for most of their work and at the same time deal with the risks and uncertainties connected with bid submission. This article examines the factors involved in tender pricing and how they interrelate. From this, a conceptual model of contractors’ pricing strategy is developed.
Resumo:
Vibration Based Damage Identification Techniques which use modal data or their functions, have received significant research interest in recent years due to their ability to detect damage in structures and hence contribute towards the safety of the structures. In this context, Strain Energy Based Damage Indices (SEDIs), based on modal strain energy, have been successful in localising damage in structuers made of homogeneous materials such as steel. However, their application to reinforced concrete (RC) structures needs further investigation due to the significant difference in the prominent damage type, the flexural crack. The work reported in this paper is an integral part of a comprehensive research program to develop and apply effective strain energy based damage indices to assess damage in reinforced concrete flexural members. This research program established (i) a suitable flexural crack simulation technique, (ii) four improved SEDI's and (iii) programmable sequentional steps to minimise effects of noise. This paper evaluates and ranks the four newly developed SEDIs and existing seven SEDIs for their ability to detect and localise flexural cracks in RC beams. Based on the results of the evaluations, it recommends the SEDIs for use with single and multiple vibration modes.
Resumo:
Carbon fibre reinforced polymer (CFRP) sheets have many outstanding properties such as high strength, high elastic modulus, light weight and good durability which are made them a suitable alternative for steel in strengthening work. This paper describe the ultimate load carrying capacity of steel hollow sections at effective bond length in terms of its cross sectional area and the stress distribution within bond region for different layers CFRP. It was found that depending on their size and orientation of uni- directional CFRP layers, the ultimate tensile load was different. Along with these tests, non linear finite element analysis was also performed to validate the ultimate load carrying capacity depending on their cross sections. The predicted ultimate loads from FE analysis are found very close to the laboratory test results. The validated model has been used to determine the stress distribution at bond joint for different orientation of CFRP. This research shows the effect of stress distribution and suitable wrapping layer to be used for the strengthening of steel hollow sections in tension.
Resumo:
This paper presents an adaptive metering algorithm for enhancing the electronic screening (e-screening) operation at truck weight stations. This algorithm uses a feedback control mechanism to control the level of truck vehicles entering the weight station. The basic operation of the algorithm allows more trucks to be inspected when the weight station is underutilized by adjusting the weight threshold lower. Alternatively, the algorithm restricts the number of trucks to inspect when the station is overutilized to prevent queue spillover. The proposed control concept is demonstrated and evaluated in a simulation environment. The simulation results demonstrate the considerable benefits of the proposed algorithm in improving overweight enforcement with minimal negative impacts on nonoverweighed trucks. The test results also reveal that the effectiveness of the algorithm improves with higher truck participation rates in the e-screening program.
Resumo:
Emerging sciences, such as conceptual cost estimating, seem to have to go through two phases. The first phase involves reducing the field of study down to its basic ingredients - from systems development to technological development (techniques) to theoretical development. The second phase operates in the direction in building up techniques from theories, and systems from techniques. Cost estimating is clearly and distinctly still in the first phase. A great deal of effort has been put into the development of both manual and computer based cost estimating systems during this first phase and, to a lesser extent, the development of a range of techniques that can be used (see, for instance, Ashworth & Skitmore, 1986). Theoretical developments have not, as yet, been forthcoming. All theories need the support of some observational data and cost estimating is not likely to be an exception. These data do not need to be complete in order to build theories. As it is possible to construct an image of a prehistoric animal such as the brontosaurus from only a few key bones and relics, so a theory of cost estimating may possibly be found on a few factual details. The eternal argument of empiricists and deductionists is that, as theories need factual support, so do we need theories in order to know what facts to collect. In cost estimating, the basic facts of interest concern accuracy, the cost of achieving this accuracy, and the trade off between the two. When cost estimating theories do begin to emerge, it is highly likely that these relationships will be central features. This paper presents some of the facts we have been able to acquire regarding one part of this relationship - accuracy, and its influencing factors. Although some of these factors, such as the amount of information used in preparing the estimate, will have cost consequences, we have not yet reached the stage of quantifying these costs. Indeed, as will be seen, many of the factors do not involve any substantial cost considerations. The absence of any theory is reflected in the arbitrary manner in which the factors are presented. Rather, the emphasis here is on the consideration of purely empirical data concerning estimating accuracy. The essence of good empirical research is to .minimize the role of the researcher in interpreting the results of the study. Whilst space does not allow a full treatment of the material in this manner, the principle has been adopted as closely as possible to present results in an uncleaned and unbiased way. In most cases the evidence speaks for itself. The first part of the paper reviews most of the empirical evidence that we have located to date. Knowledge of any work done, but omitted here would be most welcome. The second part of the paper presents an analysis of some recently acquired data pertaining to this growing subject.
Resumo:
Normanton2020 This exhibition showcases the work of 3rd -4th year undergraduate landscape architecture, architecture, Interior Design, Environmental Engineering, Civil Engineering students in response to issues of sustainability in the Gulf of Carpentaria town of Normanton. 16 students and four staff set off on a 2488km journey to undertake the second half of the Carpentaria Project (following Linking Karumba: Creating Sustainable Connections 2008), in the other Carpentaria Shire town of Normanton. This project, Get EnGulfed: Normanton 2020, looked back and forwards to propose strategies strengthening local and regional identities. Our project partners recognised the need for a strategic approach to developing future visions for Normanton’s growth as a socially, culturally, economically and ecologically sustainable town in the decade to 2020. They proposed: Project aims to foster: • Enhanced liveability; • A strengthened expression of town identity; • Expanded sustainable tourism. Primary challenges & opportunities: • Remoteness; • Two seasons: wet & dry; • Local economy; • Society and Cultural Heritage. The Exhibition Four groups of four students produced four strategic planning and design options toward this future: Mud Maps of Normanton: Rhys Belnap, AJ Humphries, Amos Shirreff, Haiku Van Keuk Normanton: Stay Another Day: Belle Dalton, Tom Jordan, Josh Nielsen, Carla Ramsland The Sweet Spot on the Savannah Way: Daniel Lapham, Yvonne Phillips, Patrick Poon, Dan Young Resilience Through Diversity: Jillian Kenny, Tania Metcher, Stephen Orr, Evan Thompson
Resumo:
Get EnGulfed: Normanton2020 This exhibition showcases the work of 3rd -4th year undergraduate landscape architecture, architecture, Interior Design, Environmental Engineering, Civil Engineering students in response to issues of sustainability in the Gulf of Carpentaria town of Normanton. It presented the work to QUT staff from across the university, as well as industry partners and invited guests. 16 students and four staff set off on a 2488km journey to undertake the second half of the Carpentaria Project (following Linking Karumba: Creating Sustainable Connections 2008), in the other Carpentaria Shire town of Normanton. This project, Get EnGulfed: Normanton 2020, looked back and forwards to propose strategies strengthening local and regional identities. Our project partners recognised the need for a strategic approach to developing future visions for Normanton’s growth as a socially, culturally, economically and ecologically sustainable town in the decade to 2020. They proposed: Project aims to foster: • Enhanced liveability; • A strengthened expression of town identity; • Expanded sustainable tourism. • Primary challenges & opportunities: • Remoteness; • Two seasons: wet & dry; • Local economy; • Society and Cultural Heritage. The Exhibition Four groups of four students produced four strategic planning and design options toward this future: Mud Maps of Normanton: Rhys Belnap, AJ Humphries, Amos Shirreff, Haiku Van Keuk Normanton: Stay Another Day: Belle Dalton, Tom Jordan, Josh Nielsen, Carla Ramsland The Sweet Spot on the Savannah Way: Daniel Lapham, Yvonne Phillips, Patrick Poon, Dan Young Resilience Through Diversity: Jillian Kenny, Tania Metcher, Stephen Orr, Evan Thompson
Resumo:
Scarcity of large parcels of land in well-serviced areas has motivated people to re-develop brownfield land. Most of brownfield land has high risk of contamination from wide range of industrial activities such as gas works, factories, railway land and waste tips. In addition, people who live in brownfield re-development areas may be exposed to health hazards. This paper discusses public perceptions on the brownfield sites and also the risk and mitigation strategy to promote brownfield re-development. Data is gathered from face to face survey of fifty respondents who work in Brisbane Central Business District (CBD) and interview with an expert on remediation of contaminated land. From this preliminary study, it is found that majority of the population are not aware of any brownfield sites near their residence and those who are aware showed very little concern on their proximity to the site. Further discussion on the paper based on a simple cross tabulation analysis. The main risk mitigation strategy of re-development of brownfield site is by updating the registration through Environmental Management Register (EMR) and Contaminated Land Register (CLR). In addition, insurance may offer to cover cost overruns on remediation cost.
Resumo:
Linking Karumba: Creating Sustainable Connections This exhibition showcases the work of 3rd -4th year undergraduate landscape architecture, architecture, Industrial Design, Environmental Engineering, Civil Engineering students in response to issues of sustainability in the Gulf of Carpentaria town of Karumba. It presented the work to the Karumba and Carpentaria Shire community. 16 students and four staff set off on a 2488km journey to undertake the first half of the Carpentaria Project: a fortnight-long strategic planning project entitled Linking Karumba to encourage social, economic, environmental and cultural linkages across the town. Karumba, along with the nearby town of Normanton, is one of Queensland’s most remote settlements. Its economy is based on fishing, tourism, and mining. It has two centres, 2.5km apart by river, or 9km by road. This physical disconnect was identified by Carpentaria Shire Council (CSC) and the Karumba Progress Association (KPA) as a source of socio-cultural disconnection, which formed the basis of our project brief. Student designs were highly responsive to the character of Karumba’s culture and environment, indicating remarkable levels of immersion, and attracting $830 000 in Qld. state government funding for implementation. The Exhibition Four groups of four students produced four strategic planning and design options toward this future: Make the Switch: Alice Anonuevo, Michael Marriott, Carla Priestley & Grant Harvey Realigning the Systems: Claudia Bergs, Rebecca Stephens, Anna Coulson & Lois Kerrigan Diversification of Experience: Rebecca North, Kyle Bush, Debra Sullivan & Jenna Green The River is the Main Street: Ashley Nicholson, Monica Kuiken, Dean Bowen & Bill Schild
Resumo:
QUT Linking Karumba Project This exhibition showcases the work of 3rd -4th year undergraduate landscape architecture, architecture, Industrial Design, Environmental Engineering, Civil Engineering students in response to issues of sustainability in the Gulf of Carpentaria town of Karumba. It presented the final, polished set of work to the Karumba and Carpentaria Shire community, following revisions in line with feedback from the 2008 exhibition. 16 students and four staff set off on a 2488km journey to undertake the first half of the Carpentaria Project: a fortnight-long strategic planning project entitled Linking Karumba to encourage social, economic, environmental and cultural linkages across the town. Karumba, along with the nearby town of Normanton, is one of Queensland’s most remote settlements. Its economy is based on fishing, tourism, and mining. It has two centres, 2.5km apart by river, or 9km by road. This physical disconnect was identified by Carpentaria Shire Council (CSC) and the Karumba Progress Association (KPA) as a source of socio-cultural disconnection, which formed the basis of our project brief. Student designs were highly responsive to the character of Karumba’s culture and environment, indicating remarkable levels of immersion, and attracting $830 000 in Qld. state government funding for implementation. The Exhibition Four groups of four students produced four strategic planning and design options toward this future: Make the Switch: Alice Anonuevo, Michael Marriott, Carla Priestley & Grant Harvey Realigning the Systems: Claudia Bergs, Rebecca Stephens, Anna Coulson & Lois Kerrigan Diversification of Experience: Rebecca North, Kyle Bush, Debra Sullivan & Jenna Green The River is the Main Street: Ashley Nicholson, Monica Kuiken, Dean Bowen & Bill Schild