117 resultados para transforming growth factor beta receptor 3
Resumo:
Background: Small-cell lung cancer (SCLC) is an aggressive disease with a poor prognosis. The insulin-like growth factor-1 receptor (IGF-1R) is an autocrine growth factor and an attractive therapeutic target in many solid tumors, but particularly in lung cancer. Patients and Methods: This study examined tumor samples from 23 patients diagnosed with SCLC, 11 resected specimens and 12 nodal biopsies obtained by mediastinoscopy, for expression of IGF-1R using the monoclonal rabbit anti-IGF-1R (clone G11, Ventana Medical Systems, Tucson, AZ) and standard immunohistochemistry (IHC). Results: All 23 tumor samples expressed IGF-1R with a range of stain intensity from weak (1+) to strong (3+). Ten tumors had a score of 3+, 7 tumors 2+, and 6 tumors 1+. Patient survival data were available for all 23 patients. Two patients died < 30 days post biopsy, therefore, the intensity of anti-IGF-1R immunostaining for 21 patients was correlated to survival. Patients with 3+ immunostaining had a poorer prognosis (P = .003). The overall survival of patients who underwent surgical resection was significantly better (median survival not reached) than patients who were not resected (median survival, 7.4 months) (P = .006). Conclusion: IGF-1R targeted therapies may have a role in the treatment of SCLC in combination with chemotherapy or as maintenance therapy. Further studies on the clinical benefit of targeting IGF-1R in SCLC are needed.
Resumo:
Dendritic cells (DCs) play critical roles in immune-mediated kidney diseases. Little is known, however, about DC subsets in human chronic kidney disease, with previous studies restricted to a limited set of pathologies and to using immunohistochemical methods. In this study, we developed novel protocols for extracting renal DC subsets from diseased human kidneys and identified, enumerated, and phenotyped them by multicolor flow cytometry. We detected significantly greater numbers of total DCs as well as CD141(hi) and CD1c(+) myeloid DC (mDCs) subsets in diseased biopsies with interstitial fibrosis than diseased biopsies without fibrosis or healthy kidney tissue. In contrast, plasmacytoid DC numbers were significantly higher in the fibrotic group compared with healthy tissue only. Numbers of all DC subsets correlated with loss of kidney function, recorded as estimated glomerular filtration rate. CD141(hi) DCs expressed C-type lectin domain family 9 member A (CLEC9A), whereas the majority of CD1c(+) DCs lacked the expression of CD1a and DC-specific ICAM-3-grabbing nonintegrin (DC-SIGN), suggesting these mDC subsets may be circulating CD141(hi) and CD1c(+) blood DCs infiltrating kidney tissue. Our analysis revealed CLEC9A(+) and CD1c(+) cells were restricted to the tubulointerstitium. Notably, DC expression of the costimulatory and maturation molecule CD86 was significantly increased in both diseased cohorts compared with healthy tissue. Transforming growth factor-β levels in dissociated tissue supernatants were significantly elevated in diseased biopsies with fibrosis compared with nonfibrotic biopsies, with mDCs identified as a major source of this profibrotic cytokine. Collectively, our data indicate that activated mDC subsets, likely recruited into the tubulointerstitium, are positioned to play a role in the development of fibrosis and, thus, progression to chronic kidney disease.
Resumo:
Heparan sulfate proteoglycans cooperate with basic fibroblast growth factor (bFGF/FGF2) signaling to control osteoblast growth and differentiation, as well as metabolic functions of osteoblasts. FGF2 signaling modulates the expression and activity of Runt-related transcription factor 2 (Runx2/Cbfa1), a key regulator of osteoblast proliferation and maturation. Here, we have characterized novel Runx2 target genes in osteoprogenitors under conditions that promote growth arrest while not yet permitting sustained phenotypic maturation. Runx2 enhances expression of genes related to proteoglycan-mediated signaling, including FGF receptors (e.g., FGFR2 and FGFR3) and proteoglycans (e.g., syndecans [Sdc1, Sdc2, Sdc3], glypicans [Gpc1], versican [Vcan]). Runx2 increases expression of the glycosyltransferase Exostosin-1 (Ext1) and heparanase, as well as alters the relative expression of N-linked sulfotransferases (Ndst1 = Ndst2 > Ndst3) and enzymes mediating O-linked sulfation of heparan sulfate (Hs2st > Hs6st) or chondroitin sulfate (Cs4st > Cs6st). Runx2 cooperates with FGF2 to induce expression of Sdc4 and the sulfatase Galns, but Runx2 and FGF2 suppress Gpc6, thus suggesting intricate Runx2 and FGF2 dependent changes in proteoglycan utilization. One functional consequence of Runx2 mediated modulations in proteoglycan-related gene expression is a change in the responsiveness of bone markers to FGF2 stimulation. Runx2 and FGF2 synergistically enhance osteopontin expression (>100 fold), while FGF2 blocks Runx2 induction of alkaline phosphatase. Our data suggest that Runx2 and the FGF/proteoglycan axis may form an extracellular matrix (ECM)-related regulatory feed-back loop that controls osteoblast proliferation and execution of the osteogenic program.
Resumo:
The mechanisms involved in the control of embryonic stem (ES) cell differentiation are yet to be fully elucidated. However, it has become clear that the family of fibroblast growth factors (FGFs) are centrally involved. In this study we examined the role of the FGF receptors (FGFRs 1-4) during osteogenesis in murine ES cells. Single cells were obtained after the formation of embryoid bodies, cultured on gelatin-coated plates, and coaxed to differentiate along the osteogenic lineage. Upregulation of genes was analyzed at both the transcript and protein levels using gene array, relative-quantitative PCR (RQ-PCR), and Western blotting. Deposition of a mineralized matrix was evaluated with Alizarin Red staining. An FGFR1-specific antibody was generated and used to block FGFR1 activity in mES cells during osteogenic differentiation. Upon induction of osteogenic differentiation in mES cells, all four FGFRs were clearly upregulated at both the transcript and protein levels with a number of genes known to be involved in osteogenic differentiation including bone morphogenetic proteins (BMPs), collagen I, and Runx2. Cells were also capable of depositing a mineralized matrix, confirming the commitment of these cells to the osteogenic lineage. When FGFR1 activity was blocked, a reduction in cell proliferation and a coincident upregulation of Runx2 with enhanced mineralization of cultures was observed. These results indicate that FGFRs play critical roles in cell recruitment and differentiation during the process of osteogenesis in mES cells. In particular, the data indicate that FGFR1 plays a pivotal role in osteoblast lineage determination.
Resumo:
Although the Mr. 72,000 type IV collagenase (matrix metalloproteinase 2) has been implicated in a variety of normal and pathogenic processes, its activation mechanism in vivo is unclear. We have found that fibroblasts from normal and neoplastic human breast, as well as the sarcomatous human Hs578T and HT1080 cell lines, activate endogenous matrix metalloprotease 2 when cultured on type I collagen gels, but not on plastic, fibronectin, collagen IV, gelatin, matrigel, or basement membrane-like HR9 cell matrix. This activation is monitored by the zymographic detection of Mr 59,000 and/or Mr 62,000 species, requires 2-3 days of culture on vitrogen to manifest, is cycloheximide inhibitable, and correlates with an arborized morphology. A similar activation pattern was seen in these cells in response to Concanavalin A but not transforming growth factor β or 12-O-tetradecanoylphorbol-13-acetate. The interstitial matrix may thus play an important role in regulating matrix degradation in vivo.
Resumo:
Adipose tissue forms when basement membrane extract (Matrigel™) and fibroblast growth factor-2 (FGF-2) are added to our mouse tissue engineering chamber model. A mouse tumor extract, Matrigel is unsuitable for human clinical application, and finding an alternative to Matrigel is essential. In this study we generated adipose tissue in the chamber model without using Matrigel by controlled release of FGF-2 in a type I collagen matrix. FGF-2 was impregnated into biodegradable gelatin microspheres for its slow release. The chambers were filled with these microspheres suspended in 60 μL collagen gel. Injection of collagen containing free FGF-2 or collagen containing gelatin microspheres with buffer alone served as controls. When chambers were harvested 6 weeks after implantation, the volume and weight of the tissue obtained were higher in the group that received collagen and FGF-2 impregnated microspheres than in controls. Histologic analysis of tissue constructs showed the formation of de novo adipose tissue accompanied by angiogenesis. In contrast, control groups did not show extensive adipose tissue formation. In conclusion, this study has shown that de novo formation of adipose tissue can be achieved through controlled release of FGF-2 in collagen type I in the absence of Matrigel.
Resumo:
Background: Cancer metastasis is the main contributor to breast cancer fatalities as women with the metastatic disease have poorer survival outcomes than women with localised breast cancers. There is an urgent need to develop appropriate prognostic methods to stratify patients based on the propensities of their cancers to metastasise. The insulin-like growth factor (IGF)-I:IGF binding protein (IGFBP):vitronectin complexes have been shown to stimulate changes in gene expression favouring increased breast cancer cell survival and a migratory phenotype. We therefore investigated the prognostic potential of these IGF- and extracellular matrix (ECM) interaction-induced proteins in the early identification of breast cancers with a propensity to metastasise using patient-derived tissue microarrays. Methods: Semiquantitative immunohistochemistry analyses were performed to compare the extracellular and subcellular distribution of IGF- and ECM-induced signalling proteins among matched normal, primary cancer and metastatic cancer formalin-fixed paraffin-embedded breast tissue samples. Results: The IGF- and ECM-induced signalling proteins were differentially expressed between subcellular and extracellular localisations. Vitronectin and IGFBP-5 immunoreactivity was lower while β1 integrin immunoreactivity was higher in the stroma surrounding metastatic cancer tissues, as compared to normal breast and primary cancer stromal tissues. Similarly, immunoreactive stratifin was found to be increased in the stroma of primary as well as metastatic breast tissues. Immunoreactive fibronectin and β1 integrin was found to be highly expressed at the leading edge of tumours. Based on the immunoreactivity it was apparent that the cell signalling proteins AKT1 and ERK1/2 shuffled from the nucleus to the cytoplasm with tumour progression. Conclusion: This is the first in-depth, compartmentalised analysis of the distribution of IGF- and ECM-induced signalling proteins in metastatic breast cancers. This study has provided insights into the changing pattern of cellular localisation and expression of IGF- and ECM-induced signalling proteins in different stages of breast cancer. The differential distribution of these biomarkers could provide important prognostic and predictive indicators that may assist the clinical management of breast disease, namely in the early identification of cancers with a propensity to metastasise, and/or recur following adjuvant therapy.
Resumo:
Background: Fundamental and genetic differences between women in the endometrium may cause some to develop endometriosis, whereas others (to not. Oral contraceptives (OC) may have in effect on the endometrium, rendering the development of endometriosis less likely. Study Design: Endometrium front women using CC (OCE) and menstrual endometrium (ME) from normal cycling women were transplanted onto the chicken chorioallantoic membrane (CAM), and endometriosis-like lesion formation was evalualed. Microarray gene expression profiling was performed to identify, differentially expressed genes in the endometrium front these groups. Microarray data were validated by real-time PCR. Results: Less endometriosis-like lesions were formed after transplantation of OCE than after transplantation of ME (p<.05). Most of the differentially expressed genes belong to the TGF beta superfamily. Real-time PCR validation revealed that inhibin beta A (INHBA) expression was significantly decreased in OCE its compared to ME. Conclusion: OC use affects the characteristics Of endometrium, rendering it less potent to develop into endometriosis. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
The 15 members of the kallikrein-related serine peptidase (KLK) family have diverse tissue-specific expression profiles and roles in a range of cellular processes, including proliferation, migration, invasion, differentiation, inflammation and angiogenesis that are required in both normal physiology as well as pathological conditions. These roles require cleavage of a range of substrates, including extracellular matrix proteins, growth factors, cytokines as well as other proteinases. In addition, it has been clear since the earliest days of KLK research that cleavage of cell surface substrates is also essential in a range of KLK-mediated cellular processes where these peptidases are essentially acting as agonists and antagonists. In this review we focus on these KLK-regulated cell surface receptor systems including bradykinin receptors, proteinase-activated receptors, as well as the plasminogen activator, ephrins and their receptors, and hepatocyte growth factor/Met receptor systems and other plasma membrane proteins. From this analysis it is clear that in many physiological and pathological settings KLKs have the potential to regulate multiple receptor systems simultaneously; an important issue when these peptidases and substrates are targeted in disease.
Resumo:
A candidate gene approach using type I single nucleotide polymorphism (SNP) markers can provide an effective method for detecting genes and gene regions that underlie phenotypic variation in adaptively significant traits. In the absence of available genomic data resources, transcriptomes were recently generated in Macrobrachium rosenbergii to identify candidate genes and markers potentially associated with growth. The characterisation of 47 candidate loci by ABI re-sequencing of four cultured and eight wild samples revealed 342 putative SNPs. Among these, 28 SNPs were selected in 23 growth-related candidate genes to genotype in 200 animals selected for improved growth performance in an experimental GFP culture line in Vietnam. The associations between SNP markers and individual growth performance were then examined. For additive and dominant effects, a total of three exonic SNPs in glycogen phosphorylase (additive), heat shock protein 90 (additive and dominant) and peroxidasin (additive), and a total of six intronic SNPs in ankyrin repeats-like protein (additive and dominant), rolling pebbles (dominant), transforming growth factor-β induced precursor (dominant), and UTP-glucose-1-phosphate uridylyltransferase 2 (dominant) genes showed significant associations with the estimated breeding values in the experimental animals (P =0.001−0.031). Individually, they explained 2.6−4.8 % of the genetic variance (R2=0.026−0.048). This is the first large set of SNP markers reported for M. rosenbergii and will be useful for confirmation of associations in other samples or culture lines as well as having applications in marker-assisted selection in future breeding programs.
Resumo:
Purpose During in vitro chondrogenesis of human mesenchymal stem cells (hMSCs) hypertrophy is an inadvertent event associated with cell differentiation toward the osteogenic lineage. Up to now, there is no stringent experimental control mechanism to prevent hypertrophy of MSCs. Microgravity is known to have an impact on osteogenesis. In this study, the influence of simulated microgravity (SMG) on both chondrogenesis and hypertrophy of hMSCs was evaluated. Methods A bioreactor using a rotating wall vessel was constructed to simulate microgravity. Pellet cultures formed from hMSCs (P5) were supplemented with human transforming growth factor-β3 (TGF-β3). The hMSC pellet cultures treated with TGF-β3 were either kept in SMG or in a control system. After three weeks of culture, the chondrogenic differentiation status and level of hypertrophy were examined by safranin-O staining, immunohistochemistry and quantitative real-time PCR. Results SMG reduced the staining for safranin-O and collagen type II. The expression of collagen type X α1 chain (COL10A1) and collagen type II α1 chain (COL2A1) were both significantly reduced. There was a higher decrease in COL2A1 than in COL10A1 expression, resulting in a low COL2A1/COL10A1 ratio. Conclusions SMG reduced hypertrophy of hMSCs during chondrogenic differentiation. However, the expression of COL2A1 was likewise reduced. Even more, the COL2A1/COL10A1 ratio decreased under SMG conditions. We therefore assume that SMG has a significant impact on the chondrogenic differentiation of hMSCs. However, due to the high COL2A1 suppression under SMG, this culture system does not yet seem to be suitable for a potential application in cartilage repair.
Resumo:
Vascular endothelial growth factor (VEGF) is an endothelial cell-specific angiogenic protein suspected to be involved in the pathogenesis of endometriosis by establishing a new blood supply to the human exfoliated endometrium. Several transcription factor-binding sites are found in the VEGF 5'-untranslated region and variation within the region increases the transcriptional activity. Six previous studies which tested between one and three single nucleotide polymorphisms (SNPs) in samples comprising 105-215 cases and 100-219 controls have produced conflicting evidence for association between the SNPs in the VEGF region and endometriosis. To further investigate the reported association between VEGF variants and endometriosis, we tested the four VEGF polymorphisms (-2578 A/C, rs699947; -460 T/C, rs833061; +405 G/C, rs2010963 and +936 C/T, rs3025039) in a large Australian sample of 958 familial endometriosis cases and 959 controls. We also conducted a literature-based review of all relevant association studies of these VEGF SNPs in endometriosis and performed a meta-analysis. There was no evidence for association between endometriosis and the VEGF polymorphisms genotyped in our study. Combined association results from a meta-analysis did not provide any evidence for either genotypic or allelic association with endometriosis. Our detailed review and meta-analysis of the VEGF polymorphisms suggests that genotyping assay problems may underlie the previously reported associations between VEGF variants and endometriosis.