169 resultados para intelligent sensors


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Compared to conventional metal-foil strain gauges, nanocomposite piezoresistive strain sensors have demonstrated high strain sensitivity and have been attracting increasing attention in recent years. To fulfil their ultimate success, the performance of vapor growth carbon fiber (VGCF)/epoxy nanocomposite strain sensors subjected to static cyclic loads was evaluated in this work. A strain-equivalent quantity (resistance change ratio) in cantilever beams with intentionally induced notches in bending was evaluated using the conventional metal-foil strain gauges and the VGCF/epoxy nanocomposite sensors. Compared to the metal-foil strain gauges, the nanocomposite sensors are much more sensitive to even slight structural damage. Therefore, it was confirmed that the signal stability, reproducibility, and durability of these nanocomposite sensors are very promising, leading to the present endeavor to apply them for static structural health monitoring.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we report the development of novel Pt/nanostructured RuO2/SiC Schottky diode based sensors for hydrogen gas applications. The nanostructured ruthenium oxide thin films were deposited on SiC substrates using radio frequency sputtering technique. Scanning electron microscopy revealed the sputtered RuO2 layer consists of nano-cubular structures with dimensions ranging between 10 and 50 nm. X-ray diffraction confirmed the presence of tetragonal ruthenium (IV) oxide, with preferred orientation along the (101) lattice plane. The current-voltage characteristics of the sensors were investigated towards hydrogen gas in synthetic air at different temperatures from 25 °C to 240 °C. The dynamic responses of the sensors were studied at an optimum temperature of 240 °C and a voltage shift of 304 mV was recorded toward 1% hydrogen gas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents material and gas sensing properties of Pt/SnO2 nanowires/SiC metal oxide semiconductor devices towards hydrogen. The SnO2 nanowires were deposited onto the SiC substrates by vapour-liquid-solid growth mechanism. The material properties of the sensors were investigated using scanning electron microscopy, transmission electron microscopy and X-ray photoelectron spectroscopy. The current-voltage characteristics have been analysed. The effective change in the barrier height for 1% hydrogen was found to be 142.91 meV. The dynamic response of the sensors towards hydrogen at different temperatures has also been studied. At 530°C, voltage shift of 310 mV for 1% hydrogen was observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a comparative study of Pt/nanostructured MoO3/SiC Schottky diode based hydrogen gas sensors is presented. MoO3 nanostructured films with three different morphologies (nanoplatelets, nanoplateletsnanowires and nano-flowers) were deposited on SiC by thermal evaporation. We compare the current-voltage characteristics and the dynamic response of these sensors as they are exposed to hydrogen gas at temperatures up to 250°C. Results indicate that the sensor based on MoO3 nanoflowers exhibited the highest sensitivity (in terms of a 5.79V voltage shift) towards 1% hydrogen; while the sensor based on MoO3 nanoplatelets showed the quickest response (t90%- 40s).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An oriented graphitic nanostructured carbon film has been employed as a conductometric hydrogen gas sensor. The carbon film was energetically deposited using a filtered cathodic vacuum arc with a -75 V bias applied to a stainless steel grid placed 1cm from the surface of the Si substrate. The substrate was heated to 400°C prior to deposition. Electron microscopy showed evidence that the film consisted largely of vertically oriented graphitic sheets and had a density of 2.06 g/cm3. 76% of the atoms were bonded in sp2 or graphitic configurations. A change in the device resistance of >; 1.5% was exhibited upon exposure to 1 % hydrogen gas (in synthetic, zero humidity air) at 100°C. The time for the sensor resistance to increase by 1.5 % under these conditions was approximately 60 s and the baseline (zero hydrogen exposure) resistance remained constant to within 0.01% during and after the hydrogen exposures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pt/nanostructured ZnO/SiC Schottky contact devices were fabricated and characterized for hydrogen gas sensing. These devices were investigated in reverse bias due to greater sensitivity, which attributes to the application of nanostructured ZnO. The current-voltage (I-V) characteristics of these devices were measured in different hydrogen concentrations. Effective change in the barrier height for 1% hydrogen was calculated as 27.06 meV at 620°C. The dynamic response of the sensors was also investigated and a voltage shift of 325 mV was recorded at 620°C during exposure to 1% hydrogen in synthetic air.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article describes the architecture of a monitoring component for the YAWL system. The architecture proposed is based on sensors and it is realized as a YAWL service to have perfect integration with the YAWL systems. The architecture proposed is generic and applicable in different contexts of business process monitoring. Finally, it was tested and evaluated in the context of risk monitoring for business processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Teaching introductory programming has challenged educators through the years. Although Intelligent Tutoring Systems that teach programming have been developed to try to reduce the problem, none have been developed to teach web programming. This paper describes the design and evaluation of the PHP Intelligent Tutoring System (PHP ITS) which addresses this problem. The evaluation process showed that students who used the PHP ITS showed a significant improvement in test scores

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The reliability analysis is crucial to reducing unexpected down time, severe failures and ever tightened maintenance budget of engineering assets. Hazard based reliability methods are of particular interest as hazard reflects the current health status of engineering assets and their imminent failure risks. Most existing hazard models were constructed using the statistical methods. However, these methods were established largely based on two assumptions: one is the assumption of baseline failure distributions being accurate to the population concerned and the other is the assumption of effects of covariates on hazards. These two assumptions may be difficult to achieve and therefore compromise the effectiveness of hazard models in the application. To address this issue, a non-linear hazard modelling approach is developed in this research using neural networks (NNs), resulting in neural network hazard models (NNHMs), to deal with limitations due to the two assumptions for statistical models. With the success of failure prevention effort, less failure history becomes available for reliability analysis. Involving condition data or covariates is a natural solution to this challenge. A critical issue for involving covariates in reliability analysis is that complete and consistent covariate data are often unavailable in reality due to inconsistent measuring frequencies of multiple covariates, sensor failure, and sparse intrusive measurements. This problem has not been studied adequately in current reliability applications. This research thus investigates such incomplete covariates problem in reliability analysis. Typical approaches to handling incomplete covariates have been studied to investigate their performance and effects on the reliability analysis results. Since these existing approaches could underestimate the variance in regressions and introduce extra uncertainties to reliability analysis, the developed NNHMs are extended to include handling incomplete covariates as an integral part. The extended versions of NNHMs have been validated using simulated bearing data and real data from a liquefied natural gas pump. The results demonstrate the new approach outperforms the typical incomplete covariates handling approaches. Another problem in reliability analysis is that future covariates of engineering assets are generally unavailable. In existing practices for multi-step reliability analysis, historical covariates were used to estimate the future covariates. Covariates of engineering assets, however, are often subject to substantial fluctuation due to the influence of both engineering degradation and changes in environmental settings. The commonly used covariate extrapolation methods thus would not be suitable because of the error accumulation and uncertainty propagation. To overcome this difficulty, instead of directly extrapolating covariate values, projection of covariate states is conducted in this research. The estimated covariate states and unknown covariate values in future running steps of assets constitute an incomplete covariate set which is then analysed by the extended NNHMs. A new assessment function is also proposed to evaluate risks of underestimated and overestimated reliability analysis results. A case study using field data from a paper and pulp mill has been conducted and it demonstrates that this new multi-step reliability analysis procedure is able to generate more accurate analysis results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we present a monocular vision based autonomous navigation system for Micro Aerial Vehicles (MAVs) in GPS-denied environments. The major drawback of monocular systems is that the depth scale of the scene can not be determined without prior knowledge or other sensors. To address this problem, we minimize a cost function consisting of a drift-free altitude measurement and up-to-scale position estimate obtained using the visual sensor. We evaluate the scale estimator, state estimator and controller performance by comparing with ground truth data acquired using a motion capture system. All resources including source code, tutorial documentation and system models are available online.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis investigates the possibility of using an adaptive tutoring system for beginning programming students. The work involved, designing, developing and evaluating such a system and showing that it was effective in increasing the students’ test scores. In doing so, Artificial Intelligence techniques were used to analyse PHP programs written by students and to provide feedback based on any specific errors made by them. Methods were also included to provide students with the next best exercise to suit their particular level of knowledge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Distributed Wireless Smart Camera (DWSC) network is a special type of Wireless Sensor Network (WSN) that processes captured images in a distributed manner. While image processing on DWSCs sees a great potential for growth, with its applications possessing a vast practical application domain such as security surveillance and health care, it suffers from tremendous constraints. In addition to the limitations of conventional WSNs, image processing on DWSCs requires more computational power, bandwidth and energy that presents significant challenges for large scale deployments. This dissertation has developed a number of algorithms that are highly scalable, portable, energy efficient and performance efficient, with considerations of practical constraints imposed by the hardware and the nature of WSN. More specifically, these algorithms tackle the problems of multi-object tracking and localisation in distributed wireless smart camera net- works and optimal camera configuration determination. Addressing the first problem of multi-object tracking and localisation requires solving a large array of sub-problems. The sub-problems that are discussed in this dissertation are calibration of internal parameters, multi-camera calibration for localisation and object handover for tracking. These topics have been covered extensively in computer vision literatures, however new algorithms must be invented to accommodate the various constraints introduced and required by the DWSC platform. A technique has been developed for the automatic calibration of low-cost cameras which are assumed to be restricted in their freedom of movement to either pan or tilt movements. Camera internal parameters, including focal length, principal point, lens distortion parameter and the angle and axis of rotation, can be recovered from a minimum set of two images of the camera, provided that the axis of rotation between the two images goes through the camera's optical centre and is parallel to either the vertical (panning) or horizontal (tilting) axis of the image. For object localisation, a novel approach has been developed for the calibration of a network of non-overlapping DWSCs in terms of their ground plane homographies, which can then be used for localising objects. In the proposed approach, a robot travels through the camera network while updating its position in a global coordinate frame, which it broadcasts to the cameras. The cameras use this, along with the image plane location of the robot, to compute a mapping from their image planes to the global coordinate frame. This is combined with an occupancy map generated by the robot during the mapping process to localised objects moving within the network. In addition, to deal with the problem of object handover between DWSCs of non-overlapping fields of view, a highly-scalable, distributed protocol has been designed. Cameras that follow the proposed protocol transmit object descriptions to a selected set of neighbours that are determined using a predictive forwarding strategy. The received descriptions are then matched at the subsequent camera on the object's path using a probability maximisation process with locally generated descriptions. The second problem of camera placement emerges naturally when these pervasive devices are put into real use. The locations, orientations, lens types etc. of the cameras must be chosen in a way that the utility of the network is maximised (e.g. maximum coverage) while user requirements are met. To deal with this, a statistical formulation of the problem of determining optimal camera configurations has been introduced and a Trans-Dimensional Simulated Annealing (TDSA) algorithm has been proposed to effectively solve the problem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent road safety statistics show that the decades-long fatalities decreasing trend is stopping and stagnating. Statistics further show that crashes are mostly driven by human error, compared to other factors such as environmental conditions and mechanical defects. Within human error, the dominant error source is perceptive errors, which represent about 50% of the total. The next two sources are interpretation and evaluation, which accounts together with perception for more than 75% of human error related crashes. Those statistics show that allowing drivers to perceive and understand their environment better, or supplement them when they are clearly at fault, is a solution to a good assessment of road risk, and, as a consequence, further decreasing fatalities. To answer this problem, currently deployed driving assistance systems combine more and more information from diverse sources (sensors) to enhance the driver's perception of their environment. However, because of inherent limitations in range and field of view, these systems' perception of their environment remains largely limited to a small interest zone around a single vehicle. Such limitations can be overcomed by increasing the interest zone through a cooperative process. Cooperative Systems (CS), a specific subset of Intelligent Transportation Systems (ITS), aim at compensating for local systems' limitations by associating embedded information technology and intervehicular communication technology (IVC). With CS, information sources are not limited to a single vehicle anymore. From this distribution arises the concept of extended or augmented perception. Augmented perception allows extending an actor's perceptive horizon beyond its "natural" limits not only by fusing information from multiple in-vehicle sensors but also information obtained from remote sensors. The end result of an augmented perception and data fusion chain is known as an augmented map. It is a repository where any relevant information about objects in the environment, and the environment itself, can be stored in a layered architecture. This thesis aims at demonstrating that augmented perception has better performance than noncooperative approaches, and that it can be used to successfully identify road risk. We found it was necessary to evaluate the performance of augmented perception, in order to obtain a better knowledge on their limitations. Indeed, while many promising results have already been obtained, the feasibility of building an augmented map from exchanged local perception information and, then, using this information beneficially for road users, has not been thoroughly assessed yet. The limitations of augmented perception, and underlying technologies, have not be thoroughly assessed yet. Most notably, many questions remain unanswered as to the IVC performance and their ability to deliver appropriate quality of service to support life-saving critical systems. This is especially true as the road environment is a complex, highly variable setting where many sources of imperfections and errors exist, not only limited to IVC. We provide at first a discussion on these limitations and a performance model built to incorporate them, created from empirical data collected on test tracks. Our results are more pessimistic than existing literature, suggesting IVC limitations have been underestimated. Then, we develop a new CS-applications simulation architecture. This architecture is used to obtain new results on the safety benefits of a cooperative safety application (EEBL), and then to support further study on augmented perception. At first, we confirm earlier results in terms of crashes numbers decrease, but raise doubts on benefits in terms of crashes' severity. In the next step, we implement an augmented perception architecture tasked with creating an augmented map. Our approach is aimed at providing a generalist architecture that can use many different types of sensors to create the map, and which is not limited to any specific application. The data association problem is tackled with an MHT approach based on the Belief Theory. Then, augmented and single-vehicle perceptions are compared in a reference driving scenario for risk assessment,taking into account the IVC limitations obtained earlier; we show their impact on the augmented map's performance. Our results show that augmented perception performs better than non-cooperative approaches, allowing to almost tripling the advance warning time before a crash. IVC limitations appear to have no significant effect on the previous performance, although this might be valid only for our specific scenario. Eventually, we propose a new approach using augmented perception to identify road risk through a surrogate: near-miss events. A CS-based approach is designed and validated to detect near-miss events, and then compared to a non-cooperative approach based on vehicles equiped with local sensors only. The cooperative approach shows a significant improvement in the number of events that can be detected, especially at the higher rates of system's deployment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In many bridges, vertical displacements are one of the most relevant parameters for structural health monitoring in both the short- and long-terms. Bridge managers around the globe are always looking for a simple way to measure vertical displacements of bridges. However, it is difficult to carry out such measurements. On the other hand, in recent years, with the advancement of fibre-optic technologies, fibre Bragg grating (FBG) sensors are more commonly used in structural health monitoring due to their outstanding advantages including multiplexing capability, immunity of electromagnetic interference as well as high resolution and accuracy. For these reasons, a methodology for measuring the vertical displacements of bridges using FBG sensors is proposed. The methodology includes two approaches. One of which is based on curvature measurements while the other utilises inclination measurements from successfully developed FBG tilt sensors. A series of simulation tests of a full-scale bridge was conducted. It shows that both approaches can be implemented to measure the vertical displacements for bridges with various support conditions, varying stiffness along the spans and without any prior known loading. A static loading beam test with increasing loads at the mid-span and a beam test with different loading locations were conducted to measure vertical displacements using FBG strain sensors and tilt sensors. The results show that the approaches can successfully measure vertical displacements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis investigates condition monitoring (CM) of diesel engines using acoustic emission (AE) techniques. The AE signals recorded from a small size diesel engine are mixtures of multiple sources from multiple cylinders. Thus, it is difficult to interpret the information conveyed in the signals for CM purposes. This thesis develops a series of practical signal processing techniques to overcome this problem. Various experimental studies conducted to assess the CM capabilities of AE analysis for diesel engines. A series of modified signal processing techniques were proposed. These techniques showed promising results of capability for CM of multiple cylinders diesel engine using multiple AE sensors.