225 resultados para computational biology
Resumo:
We report on analysis of discussions in an online community of people with chronic illness using socio-cognitively motivated, automatically produced semantic spaces. The analysis aims to further the emerging theory of "transition" (how people can learn to incorporate the consequences of illness into their lives). An automatically derived representation of sense of self for individuals is created in the semantic space by the analysis of the email utterances of the community members. The movement over time of the sense of self is visualised, via projection, with respect to axes of "ordinariness" and "extra-ordinariness". Qualitative evaluation shows that the visualisation is paralleled by the transitions of people during the course of their illness. The research aims to progress tools for analysis of textual data to promote greater use of tacit knowledge as found in online virtual communities. We hope it also encourages further interest in representation of sense-of-self.
Resumo:
Volume measurements are useful in many branches of science and medicine. They are usually accomplished by acquiring a sequence of cross sectional images through the object using an appropriate scanning modality, for example x-ray computed tomography (CT), magnetic resonance (MR) or ultrasound (US). In the cases of CT and MR, a dividing cubes algorithm can be used to describe the surface as a triangle mesh. However, such algorithms are not suitable for US data, especially when the image sequence is multiplanar (as it usually is). This problem may be overcome by manually tracing regions of interest (ROIs) on the registered multiplanar images and connecting the points into a triangular mesh. In this paper we describe and evaluate a new discreet form of Gauss’ theorem which enables the calculation of the volume of any enclosed surface described by a triangular mesh. The volume is calculated by summing the vector product of the centroid, area and normal of each surface triangle. The algorithm was tested on computer-generated objects, US-scanned balloons, livers and kidneys and CT-scanned clay rocks. The results, expressed as the mean percentage difference ± one standard deviation were 1.2 ± 2.3, 5.5 ± 4.7, 3.0 ± 3.2 and −1.2 ± 3.2% for balloons, livers, kidneys and rocks respectively. The results compare favourably with other volume estimation methods such as planimetry and tetrahedral decomposition.
Resumo:
The conclusion that the primary divergences of the modern groups of mammals occurred in the mid-Cretaceous requires fresh thinking about this facet of evolutionary history — especially in ecological terms.
Resumo:
The opening phrase of the title is from Charles Darwin’s notebooks (Schweber 1977). It is a double reminder, firstly that mainstream evolutionary theory is not just about describing nature but is particularly looking for mechanisms or ‘causes’, and secondly, that there will usually be several causes affecting any particular outcome. The second part of the title is our concern at the almost universal rejection of the idea that biological mechanisms are sufficient for macroevolutionary changes, thus rejecting a cornerstone of Darwinian evolutionary theory. Our primary aim here is to consider ways of making it easier to develop and to test hypotheses about evolution. Formalizing hypotheses can help generate tests. In an absolute sense, some of the discussion by scientists about evolution is little better than the lack of reasoning used by those advocating intelligent design. Our discussion here is in a Popperian framework where science is defined by that area of study where it is possible, in principle, to find evidence against hypotheses – they are in principle falsifiable. However, with time, the boundaries of science keep expanding. In the past, some aspects of evolution were outside the current boundaries of falsifiable science, but increasingly new techniques and ideas are expanding the boundaries of science and it is appropriate to re-examine some topics. It often appears that over the last few decades there has been an increasingly strong assumption to look first (and only) for a physical cause. This decision is virtually never formally discussed, just an assumption is made that some physical factor ‘drives’ evolution. It is necessary to examine our assumptions much more carefully. What is meant by physical factors ‘driving’ evolution, or what is an ‘explosive radiation’. Our discussion focuses on two of the six mass extinctions, the fifth being events in the Late Cretaceous, and the sixth starting at least 50,000 years ago (and is ongoing). Cretaceous/Tertiary boundary; the rise of birds and mammals. We have had a long-term interest (Cooper and Penny 1997) in designing tests to help evaluate whether the processes of microevolution are sufficient to explain macroevolution. The real challenge is to formulate hypotheses in a testable way. For example the numbers of lineages of birds and mammals that survive from the Cretaceous to the present is one test. Our first estimate was 22 for birds, and current work is tending to increase this value. This still does not consider lineages that survived into the Tertiary, and then went extinct later. Our initial suggestion was probably too narrow in that it lumped four models from Penny and Phillips (2004) into one model. This reduction is too simplistic in that we need to know about survival and ecological and morphological divergences during the Late Cretaceous, and whether Crown groups of avian or mammalian orders may have existed back into the Cretaceous. More recently (Penny and Phillips 2004) we have formalized hypotheses about dinosaurs and pterosaurs, with the prediction that interactions between mammals (and groundfeeding birds) and dinosaurs would be most likely to affect the smallest dinosaurs, and similarly interactions between birds and pterosaurs would particularly affect the smaller pterosaurs. There is now evidence for both classes of interactions, with the smallest dinosaurs and pterosaurs declining first, as predicted. Thus, testable models are now possible. Mass extinction number six: human impacts. On a broad scale, there is a good correlation between time of human arrival, and increased extinctions (Hurles et al. 2003; Martin 2005; Figure 1). However, it is necessary to distinguish different time scales (Penny 2005) and on a finer scale there are still large numbers of possibilities. In Hurles et al. (2003) we mentioned habitat modification (including the use of Geogenes III July 2006 31 fire), introduced plants and animals (including kiore) in addition to direct predation (the ‘overkill’ hypothesis). We need also to consider prey switching that occurs in early human societies, as evidenced by the results of Wragg (1995) on the middens of different ages on Henderson Island in the Pitcairn group. In addition, the presence of human-wary or humanadapted animals will affect the distribution in the subfossil record. A better understanding of human impacts world-wide, in conjunction with pre-scientific knowledge will make it easier to discuss the issues by removing ‘blame’. While continued spontaneous generation was accepted universally, there was the expectation that animals continued to reappear. New Zealand is one of the very best locations in the world to study many of these issues. Apart from the marine fossil record, some human impact events are extremely recent and the remains less disrupted by time.
Resumo:
Cyclic nitroxide radicals represent promising alternatives to the iodine-based redox mediator commonly used in dye-sensitized solar cells (DSSCs). To date DSSCs with nitroxide-based redox mediators have achieved energy conversion efficiencies of just over 5 % but efficiencies of over 15 % might be achievable, given an appropriate mediator. The efficacy of the mediator depends upon two main factors: it must reversibly undergo one-electron oxidation and it must possess an oxidation potential in a range of 0.600-0.850 V (vs. a standard hydrogen electrode (SHE) in acetonitrile at 25 °C). Herein, we have examined the effect that structural modifications have on the value of the oxidation potential of cyclic nitroxides as well as the reversibility of the oxidation process. These included alterations to the N-containing skeleton (pyrrolidine, piperidine, isoindoline, azaphenalene, etc.), as well as the introduction of different substituents (alkyl-, methoxy-, amino-, carboxy-, etc.) to the ring. Standard oxidation potentials were calculated using high-level ab initio methodology that was demonstrated to be very accurate (with a mean absolute deviation from experimental values of only 16 mV). An optimal value of 1.45 for the electrostatic scaling factor for UAKS radii in acetonitrile solution was obtained. Established trends in the values of oxidation potentials were used to guide molecular design of stable nitroxides with desired E° ox and a number of compounds were suggested for potential use as enhanced redox mediators in DSSCs. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
Objective: Preclinical and clinical data suggest that lipid biology is integral to brain development and neurodegeneration. Both aspects are proposed as being important in the pathogenesis of schizophrenia. The purpose of this paper is to examine the implications of lipid biology, in particular the role of essential fatty acids (EFA), for schizophrenia. Methods: Medline databases were searched from 1966 to 2001 followed by the crosschecking of references. Results: Most studies investigating lipids in schizophrenia described reduced EFA, altered glycerophospholipids and an increased activity of a calcium-independent phospholipase A2 in blood cells and in post-mortem brain tissue. Additionally, in vivo brain phosphorus-31 Magnetic Resonance Spectroscopy (31P-MRS) demonstrated lower phosphomonoesters (implying reduced membrane precursors) in first- and multi-episode patients. In contrast, phosphodiesters were elevated mainly in first-episode patients (implying increased membrane breakdown products), whereas inconclusive results were found in chronic patients. EFA supplementation trials in chronic patient populations with residual symptoms have demonstrated conflicting results. More consistent results were observed in the early and symptomatic stages of illness, especially if EFA with a high proportion of eicosapentaenoic acid was used. Conclusion: Peripheral blood cell, brain necropsy and 31P-MRS analysis reveal a disturbed lipid biology, suggesting generalized membrane alterations in schizophrenia. 31P-MRS data suggest increased membrane turnover at illness onset and persisting membrane abnormalities in established schizophrenia. Cellular processes regulating membrane lipid metabolism are potential new targets for antipsychotic drugs and might explain the mechanism of action of treatments such as eicosapentaenoic acid.
Resumo:
Purpose: The management of unruptured aneurysms remains controversial as treatment infers potential significant risk to the currently well patient. The decision to treat is based upon aneurysm location, size and abnormal morphology (e.g. bleb formation). A method to predict bleb formation would thus help stratify patient treatment. Our study aims to investigate possible associations between intra-aneurysmal flow dynamics and bleb formation within intracranial aneurysms. Competing theories on aetiology appear in the literature. Our purpose is to further clarify this issue. Methodology: We recruited data from 3D rotational angiograms (3DRA) of 30 patients with cerebral aneurysms and bleb formation. Models representing aneurysms pre-bleb formation were reconstructed by digitally removing the bleb, then computational fluid dynamics simulations were run on both pre and post bleb models. Pulsatile flow conditions and standard boundary conditions were imposed. Results: Aneurysmal flow structure, impingement regions, wall shear stress magnitude and gradients were produced for all models. Correlation of these parameters with bleb formation was sought. Certain CFD parameters show significant inter patient variability, making statistically significant correlation difficult on the partial data subset obtained currently. Conclusion: CFD models are readily producible from 3DRA data. Preliminary results indicate bleb formation appears to be related to regions of high wall shear stress and direct impingement regions of the aneurysm wall.
Resumo:
Problems involving the solution of advection-diffusion-reaction equations on domains and subdomains whose growth affects and is affected by these equations, commonly arise in developmental biology. Here, a mathematical framework for these situations, together with methods for obtaining spatio-temporal solutions and steady states of models built from this framework, is presented. The framework and methods are applied to a recently published model of epidermal skin substitutes. Despite the use of Eulerian schemes, excellent agreement is obtained between the numerical spatio-temporal, numerical steady state, and analytical solutions of the model.
Resumo:
Tumour necrosis factor (TNF) is a pleiotropic cytokine with dual roles in cancer biology including prostate cancer (PCa). On the one hand, there is evidence that it stimulates tumour angiogenesis, is involved in the initiation of PCa from an androgen-dependent to a castrate resistant state, plays a role in epithelial to mesenchymal plasiticity, and may contribute to the aberrant regulation of eicosanoid pathways. On the other hand, TNF has also been reported to inhibit neovascularisation, induce apoptosis of PCa cells, and stimulate anti-tumour immunity. Much of the confusion surrounding its seemingly paradoxical roles in cancer biology stems from the dependence of its effects on the biological model within which TNF is investigated. This review will address some of these issues, and also discuss on the therapeutic implications.
Resumo:
Combating unhealthy weight gain is a major public health and clinical management issue. The extent of research into the etiology and pathophysiology of obesity has produced a wealth of evidence regarding the contributing factors. While aspects of the environment are ‘obesogenic’, weight gain is not inevitable for every individual. What then explains potentially unhealthy weight gain in individuals living within an environment where others remain lean? In this paper we explore the biological compensation that acts in response to a reduced energy intake by reducing energy needs, in order to defend against weight loss. We then examine the evidence that there is only a weak biological compensation to surplus energy supply, and that this allows behavior to drive weight gain. The extent to which biology impacts behavior is also considered.
Resumo:
The cancer stem-cell (CSC) hypothesis suggests that there is a small subset of cancer cells that are responsible for tumor initiation and growth, possessing properties such as indefinite self-renewal, slow replication, intrinsic resistance to chemotherapy and radiotherapy, and an ability to give rise to differentiated progeny. Through the use of xenotransplantation assays, putative CSCs have been identified in many cancers, often identified by markers usually expressed in normal stem cells. This is also the case in lung cancer, and the accumulated data on side population cells, CD133, CD166, CD44 and ALDH1 are beginning to clarify the true phenotype of the lung cancer stem cell. Furthermore, it is now clear that many of the pathways of normal stem cells, which guide cellular proliferation, differentiation, and apoptosis are also prominent in CSCs; the Hedgehog (Hh), Notch, and Wnt signaling pathways being notable examples. The CSC hypothesis suggests that there is a small reservoir of cells within the tumor, which are resistant to many standard therapies, and can give rise to new tumors in the form of metastases or relapses after apparent tumor regression. Therapeutic interventions that target CSC pathways are still in their infancy and clinical data of their efficacy remain limited. However Smoothened inhibitors, gamma-secretase inhibitors, anti-DLL4 antagonists, Wnt antagonists, and CBP/β-catenin inhibitors have all shown promising anticancer effects in early studies. The evidence to support the emerging picture of a lung cancer CSC phenotype and the development of novel therapeutic strategies to target CSCs are described in this review.
Resumo:
The feasibility of using an in-hardware implementation of a genetic algorithm (GA) to solve the computationally expensive travelling salesman problem (TSP) is explored, especially in regard to hardware resource requirements for problem and population sizes. We investigate via numerical experiments whether a small population size might prove sufficient to obtain reasonable quality solutions for the TSP, thereby permitting relatively resource efficient hardware implementation on field programmable gate arrays (FPGAs). Software experiments on two TSP benchmarks involving 48 and 532 cities were used to explore the extent to which population size can be reduced without compromising solution quality, and results show that a GA allowed to run for a large number of generations with a smaller population size can yield solutions of comparable quality to those obtained using a larger population. This finding is then used to investigate feasible problem sizes on a targeted Virtex-7 vx485T-2 FPGA platform via exploration of hardware resource requirements for memory and data flow operations.
Resumo:
Advances in algorithms for approximate sampling from a multivariable target function have led to solutions to challenging statistical inference problems that would otherwise not be considered by the applied scientist. Such sampling algorithms are particularly relevant to Bayesian statistics, since the target function is the posterior distribution of the unobservables given the observables. In this thesis we develop, adapt and apply Bayesian algorithms, whilst addressing substantive applied problems in biology and medicine as well as other applications. For an increasing number of high-impact research problems, the primary models of interest are often sufficiently complex that the likelihood function is computationally intractable. Rather than discard these models in favour of inferior alternatives, a class of Bayesian "likelihoodfree" techniques (often termed approximate Bayesian computation (ABC)) has emerged in the last few years, which avoids direct likelihood computation through repeated sampling of data from the model and comparing observed and simulated summary statistics. In Part I of this thesis we utilise sequential Monte Carlo (SMC) methodology to develop new algorithms for ABC that are more efficient in terms of the number of model simulations required and are almost black-box since very little algorithmic tuning is required. In addition, we address the issue of deriving appropriate summary statistics to use within ABC via a goodness-of-fit statistic and indirect inference. Another important problem in statistics is the design of experiments. That is, how one should select the values of the controllable variables in order to achieve some design goal. The presences of parameter and/or model uncertainty are computational obstacles when designing experiments but can lead to inefficient designs if not accounted for correctly. The Bayesian framework accommodates such uncertainties in a coherent way. If the amount of uncertainty is substantial, it can be of interest to perform adaptive designs in order to accrue information to make better decisions about future design points. This is of particular interest if the data can be collected sequentially. In a sense, the current posterior distribution becomes the new prior distribution for the next design decision. Part II of this thesis creates new algorithms for Bayesian sequential design to accommodate parameter and model uncertainty using SMC. The algorithms are substantially faster than previous approaches allowing the simulation properties of various design utilities to be investigated in a more timely manner. Furthermore the approach offers convenient estimation of Bayesian utilities and other quantities that are particularly relevant in the presence of model uncertainty. Finally, Part III of this thesis tackles a substantive medical problem. A neurological disorder known as motor neuron disease (MND) progressively causes motor neurons to no longer have the ability to innervate the muscle fibres, causing the muscles to eventually waste away. When this occurs the motor unit effectively ‘dies’. There is no cure for MND, and fatality often results from a lack of muscle strength to breathe. The prognosis for many forms of MND (particularly amyotrophic lateral sclerosis (ALS)) is particularly poor, with patients usually only surviving a small number of years after the initial onset of disease. Measuring the progress of diseases of the motor units, such as ALS, is a challenge for clinical neurologists. Motor unit number estimation (MUNE) is an attempt to directly assess underlying motor unit loss rather than indirect techniques such as muscle strength assessment, which generally is unable to detect progressions due to the body’s natural attempts at compensation. Part III of this thesis builds upon a previous Bayesian technique, which develops a sophisticated statistical model that takes into account physiological information about motor unit activation and various sources of uncertainties. More specifically, we develop a more reliable MUNE method by applying marginalisation over latent variables in order to improve the performance of a previously developed reversible jump Markov chain Monte Carlo sampler. We make other subtle changes to the model and algorithm to improve the robustness of the approach.
Resumo:
A critical step in the dissemination of ovarian cancer is the formation of multicellular spheroids from cells shed from the primary tumour. The objectives of this study were to apply bioengineered three-dimensional (3D) microenvironments for culturing ovarian cancer spheroids in vitro and simultaneously to build on a mathematical model describing the growth of multicellular spheroids in these biomimetic matrices. Cancer cells derived from human epithelial ovarian carcinoma were embedded within biomimetic hydrogels of varying stiffness and grown for up to 4 weeks. Immunohistochemistry, imaging and growth analyses were used to quantify the dependence of cell proliferation and apoptosis on matrix stiffness, long-term culture and treatment with the anti-cancer drug paclitaxel. The mathematical model was formulated as a free boundary problem in which each spheroid was treated as an incompressible porous medium. The functional forms used to describe the rates of cell proliferation and apoptosis were motivated by the experimental work and predictions of the mathematical model compared with the experimental output. This work aimed to establish whether it is possible to simulate solid tumour growth on the basis of data on spheroid size, cell proliferation and cell death within these spheroids. The mathematical model predictions were in agreement with the experimental data set and simulated how the growth of cancer spheroids was influenced by mechanical and biochemical stimuli including matrix stiffness, culture duration and administration of a chemotherapeutic drug. Our computational model provides new perspectives on experimental results and has informed the design of new 3D studies of chemoresistance of multicellular cancer spheroids.
Resumo:
The larvae of particular Ogmograptis spp. produce distinctive scribbles on some smooth-barked Eucalyptus spp. which are a common feature on many ornamental and forest trees in Australia. However, although they are conspicuous in the environment the systematics and biology of the genus has been poorly studied. This has been addressed through detailed field and laboratory studies of their biology of three species (O. racemosa Horak sp. nov., O. fraxinoides Horak sp. nov., O. scribula Meyrick), in conjunction with a comprehensive taxonomic revision support by a molecular phylogeny utilising the mitochondrial Cox1 and nuclear 18S genes. In brief, eggs are laid in bark depressions and the first instar larvae bore into the bark to the level where the future cork cambium forms (the phellegen). Early instar larvae bore wide, arcing tracks in this layer before forming a tighter zig-zag shaped pattern. The second last instar turns and bores either closely parallel to the initial mine or doubles its width, along the zig-zag shaped mine. The final instar possesses legs and a spinneret (unlike the earlier instars) and feeds exclusively on callus tissue which forms within the zig-zag shaped mine formed by the previous instar, before emerging from the bark to pupate at the base of the tree. The scars of mines them become visible scribble following the shedding of bark. Sequence data confirm the placement of Ogmograptis within the Bucculatricidae, suggest that the larvae responsible for the ‘ghost scribbles’ (unpigmented, raised scars found on smooth-barked eucalypts) are members of the genus Tritymba, and support the morphology-based species groups proposed for Ogmograptis. The formerly monotypic genus Ogmograptis Meyrick is revised and divided into three species groups. Eleven new species are described: Ogmograptis fraxinoides Horak sp. nov., Ogmograptis racemosa Horak sp. nov. and Ogmograptis pilularis Horak sp. nov. forming the scribula group with Ogmograptis scribula Meyrick; Ogmograptis maxdayi Horak sp. nov., Ogmograptis barloworum Horak sp. nov., Ogmograptis paucidentatus Horak sp. nov., Ogmograptis rodens Horak sp. nov., Ogmograptis bignathifer Horak sp. nov. and Ogmograptis inornatus Horak sp. nov. as the maxdayi group; Ogmograptis bipunctatus Horak sp. nov., Ogmograptis pulcher Horak sp. nov., Ogmograptis triradiata (Turner) comb. nov. and Ogmograptis centrospila (Turner) comb. nov. as the triradiata group. Ogmograptis notosema (Meyrick) cannot be assigned to a species group as the holotype has not been located. Three unique synapomorphies, all derived from immatures, redefine the family Bucculatricidae, uniting Ogmograptis, Tritymba Meyrick (both Australian) and Leucoedemia Scoble & Scholtz (African) with Bucculatrix Zeller, which is the sister group of the southern hemisphere genera. The systematic history of Ogmograptis and the Bucculatricidae is discussed.