704 resultados para Student Union Building
Resumo:
The importance of broadening community participation in environmental decision-making is widely recognized and lack of participation in this process appears to be a perennial problem. In this context, there have been calls from some academics for the more extensive use of geographic information systems (GIS) and distance learning technologies, accessible via the Internet, as a possible means to inform and empower communities. However, a number of problems exist. For instance, at present the scope for online interaction between policy-makers and citizens is currently limited. Contemporary web-based environmental information systems suffer from this lack of interactivity on the one hand and on the other hand from the apparent complexity for the lay user. This paper explores the issue of online community participation at the local level and attempts to construct a framework for a new (and potentially more effective) model of online participatory decision-making. The key components, system architecture and stages of such a model are introduced. This model, referred to as a ‘Community Based Interactive Environmental Decision Support System’, incorporates advanced information technologies, distance learning and community involvement tools which will be applied and evaluated in the field through a pilot project in Tokyo in the summer of 2002.
Resumo:
Since the industrial revolution, our world has experienced rapid and unplanned industrialization and urbanization. As a result, we have had to cope with serious environmental challenges. In this context, explanation of how smart urban ecosystems can emerge, gains a crucial importance. Capacity building and community involvement have always been the key issues in achieving sustainable development and enhancing urban ecosystems. By considering these, this paper looks at new approaches to increase public awareness of environmental decision making. This paper will discuss the role of Information and Communication Technologies (ICT), particularly Web-based Geographic Information Systems (Web-based GIS) as spatial decision support systems to aid public participatory environmental decision making. The paper also explores the potential and constraints of these web-based tools for collaborative decision making.
Resumo:
The lack of satisfactory consensus for characterizing the system intelligence and structured analytical decision models has inhibited the developers and practitioners to understand and configure optimum intelligent building systems in a fully informed manner. So far, little research has been conducted in this aspect. This research is designed to identify the key intelligent indicators, and develop analytical models for computing the system intelligence score of smart building system in the intelligent building. The integrated building management system (IBMS) was used as an illustrative example to present a framework. The models presented in this study applied the system intelligence theory, and the conceptual analytical framework. A total of 16 key intelligent indicators were first identified from a general survey. Then, two multi-criteria decision making (MCDM) approaches, the analytic hierarchy process (AHP) and analytic network process (ANP), were employed to develop the system intelligence analytical models. Top intelligence indicators of IBMS include: self-diagnostic of operation deviations; adaptive limiting control algorithm; and, year-round time schedule performance. The developed conceptual framework was then transformed to the practical model. The effectiveness of the practical model was evaluated by means of expert validation. The main contribution of this research is to promote understanding of the intelligent indicators, and to set the foundation for a systemic framework that provide developers and building stakeholders a consolidated inclusive tool for the system intelligence evaluation of the proposed components design configurations.
Resumo:
In architecture courses, instilling a wider understanding of the industry specific representations practiced in the Building Industry is normally done under the auspices of Technology and Science subjects. Traditionally, building industry professionals communicated their design intentions using industry specific representations. Originally these mainly two dimensional representations such as plans, sections, elevations, schedules, etc. were produced manually, using a drawing board. Currently, this manual process has been digitised in the form of Computer Aided Design and Drafting (CADD) or ubiquitously simply CAD. While CAD has significant productivity and accuracy advantages over the earlier manual method, it still only produces industry specific representations of the design intent. Essentially, CAD is a digital version of the drawing board. The tool used for the production of these representations in industry is still mainly CAD. This is also the approach taken in most traditional university courses and mirrors the reality of the situation in the building industry. A successor to CAD, in the form of Building Information Modelling (BIM), is presently evolving in the Construction Industry. CAD is mostly a technical tool that conforms to existing industry practices. BIM on the other hand is revolutionary both as a technical tool and as an industry practice. Rather than producing representations of design intent, BIM produces an exact Virtual Prototype of any building that in an ideal situation is centrally stored and freely exchanged between the project team. Essentially, BIM builds any building twice: once in the virtual world, where any faults are resolved, and finally, in the real world. There is, however, no established model for learning through the use of this technology in Architecture courses. Queensland University of Technology (QUT), a tertiary institution that maintains close links with industry, recognises the importance of equipping their graduates with skills that are relevant to industry. BIM skills are currently in increasing demand throughout the construction industry through the evolution of construction industry practices. As such, during the second half of 2008, QUT 4th year architectural students were formally introduced for the first time to BIM, as both a technology and as an industry practice. This paper will outline the teaching team’s experiences and methodologies in offering a BIM unit (Architectural Technology and Science IV) at QUT for the first time and provide a description of the learning model. The paper will present the results of a survey on the learners’ perspectives of both BIM and their learning experiences as they learn about and through this technology.
Resumo:
The availability of innumerable intelligent building (IB) products, and the current dearth of inclusive building component selection methods suggest that decision makers might be confronted with the quandary of forming a particular combination of components to suit the needs of a specific IB project. Despite this problem, few empirical studies have so far been undertaken to analyse the selection of the IB systems, and to identify key selection criteria for major IB systems. This study is designed to fill these research gaps. Two surveys: a general survey and the analytic hierarchy process (AHP) survey are proposed to achieve these objectives. The first general survey aims to collect general views from IB experts and practitioners to identify the perceived critical selection criteria, while the AHP survey was conducted to prioritize and assign the important weightings for the perceived criteria in the general survey. Results generally suggest that each IB system was determined by a disparate set of selection criteria with different weightings. ‘Work efficiency’ is perceived to be most important core selection criterion for various IB systems, while ‘user comfort’, ‘safety’ and ‘cost effectiveness’ are also considered to be significant. Two sub-criteria, ‘reliability’ and ‘operating and maintenance costs’, are regarded as prime factors to be considered in selecting IB systems. The current study contributes to the industry and IB research in at least two aspects. First, it widens the understanding of the selection criteria, as well as their degree of importance, of the IB systems. It also adopts a multi-criteria AHP approach which is a new method to analyse and select the building systems in IB. Further research would investigate the inter-relationship amongst the selection criteria.
Resumo:
Some Engineering Faculties are turning to the problem-based learning (PBL)paradigm to engender necessary skills and competence in their graduates. Since, at the same time, some Faculties are moving towards distance education, questions are being asked about the effectiveness of PBL for technical fields such as Engineering when delivered in virtual space. This paper outlines an investigation of how student attributes affect their learning experience in PBL courses offered in virtual space. A frequency distribution was superimposed on the outcome space of a phenomenographical study on a suitable PBL course to investigate the effect of different student attributes on the learning experience. It was discovered that the quality, quantity, and style of facilitator interaction had the greatest impact on the student learning experience. This highlights the need to establish consistent student interaction plans and to set, and ensure compliance with, minimum standards with respect to facilitation and student interactions.
Resumo:
The construction industry has adapted information technology in its processes in terms of computer aided design and drafting, construction documentation and maintenance. The data generated within the construction industry has become increasingly overwhelming. Data mining is a sophisticated data search capability that uses classification algorithms to discover patterns and correlations within a large volume of data. This paper presents the selection and application of data mining techniques on maintenance data of buildings. The results of applying such techniques and potential benefits of utilising their results to identify useful patterns of knowledge and correlations to support decision making of improving the management of building life cycle are presented and discussed.
Resumo:
The building life cycle process is complex and prone to fragmentation as it moves through its various stages. The number of participants, and the diversity, specialisation and isolation both in space and time of their activities, have dramatically increased over time. The data generated within the construction industry has become increasingly overwhelming. Most currently available computer tools for the building industry have offered productivity improvement in the transmission of graphical drawings and textual specifications, without addressing more fundamental changes in building life cycle management. Facility managers and building owners are primarily concerned with highlighting areas of existing or potential maintenance problems in order to be able to improve the building performance, satisfying occupants and minimising turnover especially the operational cost of maintenance. In doing so, they collect large amounts of data that is stored in the building’s maintenance database. The work described in this paper is targeted at adding value to the design and maintenance of buildings by turning maintenance data into information and knowledge. Data mining technology presents an opportunity to increase significantly the rate at which the volumes of data generated through the maintenance process can be turned into useful information. This can be done using classification algorithms to discover patterns and correlations within a large volume of data. This paper presents how and what data mining techniques can be applied on maintenance data of buildings to identify the impediments to better performance of building assets. It demonstrates what sorts of knowledge can be found in maintenance records. The benefits to the construction industry lie in turning passive data in databases into knowledge that can improve the efficiency of the maintenance process and of future designs that incorporate that maintenance knowledge.