121 resultados para Knowledge representation (Information theory)
Resumo:
We consider the problem of increasing the threshold parameter of a secret-sharing scheme after the setup (share distribution) phase, without further communication between the dealer and the shareholders. Previous solutions to this problem require one to start off with a nonstandard scheme designed specifically for this purpose, or to have communication between shareholders. In contrast, we show how to increase the threshold parameter of the standard Shamir secret-sharing scheme without communication between the shareholders. Our technique can thus be applied to existing Shamir schemes even if they were set up without consideration to future threshold increases. Our method is a new positive cryptographic application for lattice reduction algorithms, inspired by recent work on lattice-based list decoding of Reed-Solomon codes with noise bounded in the Lee norm. We use fundamental results from the theory of lattices (geometry of numbers) to prove quantitative statements about the information-theoretic security of our construction. These lattice-based security proof techniques may be of independent interest.
Resumo:
The notion of identity-based IB cryptography was proposed by Shamir [177] as a specialization of public key PK cryptography which dispensed with the need for cumbersome directories, certificates, and revocation lists.
Resumo:
The concept of cloud computing services is appealing to the small and medium enterprises (SMEs), with the opportunity to acquire modern information technology resources as a utility and avoid costly capital investments in technology resources. However, the adoption of the cloud computing services presents significant challenges to the SMEs. The SMEs need to determine a path to adopting the cloud computing services that would ensure their sustainable presence in the cloud computing environment. Information about approaches to adopting the cloud computing services by the SMEs is fragmented. Through an interpretive design, we suggest that the SMEs need to have a strategic and incremental intent, understand their organizational structure, understand the external factors, consider the human resource capacity, and understand the value expectations from the cloud computing services to forge a successful path to adopting the cloud computing services. These factors would contribute to a model of cloud services for SMEs.
Resumo:
We analyse the security of the cryptographic hash function LAKE-256 proposed at FSE 2008 by Aumasson, Meier and Phan. By exploiting non-injectivity of some of the building primitives of LAKE, we show three different collision and near-collision attacks on the compression function. The first attack uses differences in the chaining values and the block counter and finds collisions with complexity 233. The second attack utilizes differences in the chaining values and salt and yields collisions with complexity 242. The final attack uses differences only in the chaining values to yield near-collisions with complexity 299. All our attacks are independent of the number of rounds in the compression function. We illustrate the first two attacks by showing examples of collisions and near-collisions.
Resumo:
We discuss algorithms for combining sequential prediction strategies, a task which can be viewed as a natural generalisation of the concept of universal coding. We describe a graphical language based on Hidden Markov Models for defining prediction strategies, and we provide both existing and new models as examples. The models include efficient, parameterless models for switching between the input strategies over time, including a model for the case where switches tend to occur in clusters, and finally a new model for the scenario where the prediction strategies have a known relationship, and where jumps are typically between strongly related ones. This last model is relevant for coding time series data where parameter drift is expected. As theoretical contributions we introduce an interpolation construction that is useful in the development and analysis of new algorithms, and we establish a new sophisticated lemma for analysing the individual sequence regret of parameterised models.
Resumo:
In traditional communication and information theory, noise is the demon Other, an unwelcome disruption in the passage of information. Noise is "anything that is added to the signal between its transmission and reception that is not intended by the source...anything that makes the intended signal harder to decode accurately". It is in Michel Serres' formulation, the "third man" in dialogue who is always assumed, and whom interlocutors continually struggle to exclude. Noise is simultaneously a condition and a by-product of the act of communication, it represents the ever present possibility of disruption, interruption, misunderstanding. In sonic or musical terms noise is cacophony, dissonance. For economists, noise is an arbitrary element, both a barrier to the pursuit of wealth and a basis for speculation. For Mick (Jeremy Sims) and his mate Kev (Ben Mendelsohn) in David Caesar's Idiot Box (1996), as for Hando (Russell Crowe) and his gang of skinheads in Geoffrey Wright's Romper Stomper (1992), or Dazey (Ben Mendelsohn) and Joe (Aden Young) in Wright's Metal Skin (1994) and all those like them starved of (useful) information and excluded from the circuit - the information poor - their only option, their only point of intervention in the loop, is to make noise, to disrupt, to discomfort, to become Serres' "third man", "the prosopopoeia of noise" (5).
Resumo:
Clustering is an important technique in organising and categorising web scale documents. The main challenges faced in clustering the billions of documents available on the web are the processing power required and the sheer size of the datasets available. More importantly, it is nigh impossible to generate the labels for a general web document collection containing billions of documents and a vast taxonomy of topics. However, document clusters are most commonly evaluated by comparison to a ground truth set of labels for documents. This paper presents a clustering and labeling solution where the Wikipedia is clustered and hundreds of millions of web documents in ClueWeb12 are mapped on to those clusters. This solution is based on the assumption that the Wikipedia contains such a wide range of diverse topics that it represents a small scale web. We found that it was possible to perform the web scale document clustering and labeling process on one desktop computer under a couple of days for the Wikipedia clustering solution containing about 1000 clusters. It takes longer to execute a solution with finer granularity clusters such as 10,000 or 50,000. These results were evaluated using a set of external data.
Resumo:
Health care services are typically consumed out of necessity, typically to recover from illness. While the consumption of health care services can be emotional given that consumers experience fear, hope, relief, and joy, surprisingly, there is little research on the role of consumer affect in health care consumption. We propose that consumer affect is a heuristic cue that drives evaluation of health care services. Drawing from cognitive appraisal theory and affect-as-information theory, this article tests a research model (N = 492) that investigates consumer affect resulting from service performance on subsequent service outcomes.
Resumo:
This paper presents a novel vision-based underwater robotic system for the identification and control of Crown-Of-Thorns starfish (COTS) in coral reef environments. COTS have been identified as one of the most significant threats to Australia's Great Barrier Reef. These starfish literally eat coral, impacting large areas of reef and the marine ecosystem that depends on it. Evidence has suggested that land-based nutrient runoff has accelerated recent outbreaks of COTS requiring extensive use of divers to manually inject biological agents into the starfish in an attempt to control population numbers. Facilitating this control program using robotics is the goal of our research. In this paper we introduce a vision-based COTS detection and tracking system based on a Random Forest Classifier (RFC) trained on images from underwater footage. To track COTS with a moving camera, we embed the RFC in a particle filter detector and tracker where the predicted class probability of the RFC is used as an observation probability to weight the particles, and we use a sparse optical flow estimation for the prediction step of the filter. The system is experimentally evaluated in a realistic laboratory setup using a robotic arm that moves a camera at different speeds and heights over a range of real-size images of COTS in a reef environment.
Resumo:
Australia is a leading user of collaborative procurement methods, which are used to deliver large and complex infrastructure projects. Project alliances, Early Contractor Involvement (ECI), and partnering are typical examples of collaborative procurement models. In order to increase procurement effectiveness and value for money (VfM), clients have adopted various learning strategies for new contract development. However client learning strategies and behaviours have not been systematically analysed before. Therefore, the current paper undertakes a literature review addressing the research question “How can client learning capabilities be effectively understood?”. From the resource-based and dynamic capability perspectives, this paper proposes that the collaborative learning capability (CLC) of clients drives procurement model evolution. Learning routines underpinning CLC carry out exploratory, transformative and exploitative learning phases associated with collaborative project delivery. This learning improves operating routines, and ultimately performance. The conceptualization of CLC and the three sequential learning phases is used to analyse the evidence in the construction management literature. The main contribution of this study is the presentation of a theoretical foundation for future empirical studies to unveil effective learning strategies, which help clients to improve the performance of collaborative projects in the dynamic infrastructure market.
Resumo:
Permissions are special case of deontic effects and play important role compliance. Essentially they are used to determine the obligations or prohibitions to contrary. A formal language e.g., temporal logic, event-calculus et., not able to represent permissions is doomed to be unable to represent most of the real-life legal norms. In this paper we address this issue and extend deontic-event-calculus (DEC) with new predicates for modelling permissions enabling it to elegantly capture the intuition of real-life cases of permissions.
Resumo:
Although robotics research has seen advances over the last decades robots are still not in widespread use outside industrial applications. Yet a range of proposed scenarios have robots working together, helping and coexisting with humans in daily life. In all these a clear need to deal with a more unstructured, changing environment arises. I herein present a system that aims to overcome the limitations of highly complex robotic systems, in terms of autonomy and adaptation. The main focus of research is to investigate the use of visual feedback for improving reaching and grasping capabilities of complex robots. To facilitate this a combined integration of computer vision and machine learning techniques is employed. From a robot vision point of view the combination of domain knowledge from both imaging processing and machine learning techniques, can expand the capabilities of robots. I present a novel framework called Cartesian Genetic Programming for Image Processing (CGP-IP). CGP-IP can be trained to detect objects in the incoming camera streams and successfully demonstrated on many different problem domains. The approach requires only a few training images (it was tested with 5 to 10 images per experiment) is fast, scalable and robust yet requires very small training sets. Additionally, it can generate human readable programs that can be further customized and tuned. While CGP-IP is a supervised-learning technique, I show an integration on the iCub, that allows for the autonomous learning of object detection and identification. Finally this dissertation includes two proof-of-concepts that integrate the motion and action sides. First, reactive reaching and grasping is shown. It allows the robot to avoid obstacles detected in the visual stream, while reaching for the intended target object. Furthermore the integration enables us to use the robot in non-static environments, i.e. the reaching is adapted on-the- fly from the visual feedback received, e.g. when an obstacle is moved into the trajectory. The second integration highlights the capabilities of these frameworks, by improving the visual detection by performing object manipulation actions.
Resumo:
Detection and prevention of global network satellite system (GNSS) “spoofing” attacks, or the broadcast of false global navigation satellite system services, has recently attracted much research interest. This survey aims to fill three gaps in the literature: first, to assess in detail the exact nature of threat scenarios posed by spoofing against the most commonly cited targets; second, to investigate the many practical impediments, often underplayed, to carrying out GNSS spoofing attacks in the field; and third, to survey and assess the effectiveness of a wide range of proposed defences against GNSS spoofing. Our conclusion lists promising areas of future research.