105 resultados para tin


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the electropolymerization of poly(3,4-ethylenedioxythiopene) (PEDOT) from an ionic liquid, butyl-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (C4mpyrTFSI) onto flexible carbon cloth electrodes. A continuous, homogeneous and well adhered coating of the individual cloth fibres is achieved by employing a sandwich cell arrangement where the carbon cloth which is soaked with electrolyte is placed between two indium tin oxide electrodes isolated from each other by a battery separator. The resultant PEDOT modified carbon cloth electrode demonstrates excellent activity for the oxygen reduction reaction which is due to the doping level, conductivity and morphology of the PEDOT layer and is also tolerant to the presence of methanol in the electrolyte. This simple approach therefore offers a route to fabricate flexible polymer electrodes that could be used in various electronic applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Highly conductive, transparent and flexible planar electrodes were fabricated using interwoven silver nanowires and single-walled carbon nanotubes (AgNW:SWCNT) in a PEDOT:PSS matrix via an epoxy transfer method from a silicon template. The planar electrodes achieved a sheet resistance of 6.6 ± 0.0 Ω/squ and an average transmission of 86% between 400 and 800 nm. A high figure of merit of 367 Ω−1 is reported for the electrodes, which is much higher than that measured for indium tin oxide and reported for other AgNW composites. The AgNW:SWCNT:PEDOT:PSS electrode was used to fabricate low temperature (annealing free) devices demonstrating their potential to function with a range of organic semiconducting polymer:fullerene bulk heterojunction blend systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High efficiency organic photovoltaic cells discussed in literature are normally restricted to devices fabricated on glass substrates. This is a consequence of the extreme brittleness and inflexibility of the commonly used transparent conductive oxide electrode, indium tin oxide (ITO). This shortcoming of ITO along with other concerns such as increasing scarcity of indium, migration of indium to organic layer, etc. makes it imperative to move away from ITO. Here we demonstrate a highly flexible Ag electrode that possesses low sheet resistances even in ultra-thin layers. It retains its conductivity under severe bending stresses where ITO fails completely. A P3HT:PCBM blend organic solar cell fabricated on this highly flexible electrode gives an efficiency of 2.3%.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bottom emitting organic light emitting diodes (OLEDs) can suffer from lower external quantum efficiencies (EQE) due to inefficient out-coupling of the generated light. Herein, it is demonstrated that the current efficiency and EQE of red, yellow, and blue fluorescent single layer polymer OLEDs is significantly enhanced when a MoOx(5 nm)/Ag(10 nm)/MoOx(40 nm) stack is used as the transparent anode in a top emitting OLED structure. A maximum current efficiency and EQE of 21.2 cd/A and 6.7%, respectively, was achieved for a yellow OLED, while a blue OLED achieved a maximum of 16.5 cd/A and 10.1%, respectively. The increase in light out-coupling from the top-emitting OLEDs led to increase in efficiency by a factor of up to 2.2 relative to the optimised bottom emitting devices, which is the best out-coupling reported using solution processed polymers in a simple architecture and a significant step forward for their use in large area lighting and displays.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Flexible multilayer electrodes that combine high transparency, high conductivity, and efficient charge extraction have been deposited, characterised and used as the anode in organic solar cells. The anode consists of an AZO/Ag/AZO stack plus a very thin oxide interlayer whose ionization potential is fine-tuned by manipulating its gap state density to optimise charge transfer with the bulk heterojunction active layer consisting of poly(n-3- hexylthiophene-2,5-diyl) and phenyl-C61-butyric acid methyl ester (P3HT:BC61BM). The deposition method for the stack was compatible with the low temperatures required for polymer substrates. Optimisation of the electrode stack was achieved by modelling the optical and electrical properties of the device and a power conversion efficiency of 2.9% under AM1.5 illumination compared to 3.0% with an ITO-only anode and 3.5% for an ITO:PEDOT electrode. Dark I-V reverse bias characteristics indicate very low densities of occupied buffer states close to the HOMO level of the hole conductor, despite observed ionization potential being high enough. Their elimination should raise efficiency to that with ITO:PEDOT.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Target-tilted room temperature sputtering of aluminium doped zinc oxide (AZO) provides transparent conducting electrodes with sheet resistances of <10 Ω □-1 and average transmittance in the visible region of up to 84%. The properties of the AZO electrode are found to be strongly dependent on the target-tilting angle and film thickness. The AZO electrodes showed comparable performance to commercial indium tin oxide (ITO) electrodes in organic photovoltaic (OPV) devices. OPV devices containing a bulk heterojunction active layer comprised of poly(3-n-hexylthiophene) (P3HT):phenyl-C61-butyric acid methyl ester (PCBM) and an AZO transparent conducting electrode had a power conversion efficiency (PCE) of up to 2.5% with those containing ITO giving a PCE of 2.6%. These results demonstrate that AZO films are a good alternative to ITO for transparent conducting electrodes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The interaction at the interface between a metal electrode and photoactive polymer is crucial for overall performance and stability of organic photovoltaics (OPVs). In this article, we report a comparative study of the stability of thin film Ag and indium tin oxide (ITO) as electrodes when used in conjunction with an interfacial PEDOT:PSS layer for P3HT:PCBM blend OPV devices. XPS measurements were taken for Ag and ITO/PEDOT:PSS layered samples with different exposure times to ambient conditions (∼25 °C, ∼50% relative humidity) to investigate the migration of Ag and In into the PEDOT:PSS layer. The change in efficiency of OPVs with a longer exposure time and degree of migration is explained by the analysis of XPS results. We propose the mechanism behind the interactions occurring at the interfaces. The efficiency of the ITO electrode OPVs continuously decreased to below 10% of the initial efficiency. However, the Ag devices displayed a slower degradation and maintained 50% of the initial efficiency for the same period of time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, effects of concentrations of Cu(II), Zn(II) and Sn(II) ions in the electrolytic bath solution on the properties of electrochemically deposited CuZnSn (CZT) films were investigated. Study of the composition of a CZT film has shown that the metallic content (relative atomic ratio) in the film increased linearly with increase in the metal ion concentration. It is the first time that the relationship of the compositions of the alloy phases in the co-electrodeposited CZT film with the concentration of metal ions has been revealed. The results have confirmed that the formation and content of Cu6Sn5 and Cu5Zn8 alloy phases in the film were directly controlled by the concentration of Cu(II). SEM measurements have shown that Sn(II) has significant impact on film morphology, which became more porous as a result of the larger nucleation size of tin. The changes in the surface properties of the films was also confirmed by chronoamperometry characteristic (i–t) deposition curves. By optimization of metal ion concentrations in the electrolyte solution, a copper-poor and zinc-rich kesterite Cu2ZnSnS4 (CZTS) film was synthesized by the sulfurization of the deposited CZT film. The solar cell with the CZTS film showed an energy conversion efficiency of 2.15% under the illumination intensity of 100 mW cm 2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A roll-to-roll compatible, high throughput process is reported for the production of highly conductive, transparent planar electrode comprising an interwoven network of silver nanowires and single walled carbon nanotubes imbedded into poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS). The planar electrode has a sheet resistance of between 4 and 7 Ω □−1 and a transmission of >86% between 800 and 400 nm with a figure of merit of between 344 and 400 Ω−1. The nanocomposite electrode is highly flexible and retains a low sheet resistance after bending at a radius of 5 mm for up to 500 times without loss. Organic photovoltaic devices containing the planar nanocomposite electrodes had efficiencies of ∼90% of control devices that used indium tin oxide as the transparent conducting electrode.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The catalytic role of germanium (Ge) was investigated to improve the electrochemical performance of tin dioxide grown on graphene (SnO(2)/G) nanocomposites as an anode material of lithium ion batteries (LIBs). Germanium dioxide (GeO(20) and SnO(2) nanoparticles (<10 nm) were uniformly anchored on the graphene sheets via a simple single-step hydrothermal method. The synthesized SnO(2)(GeO(2))0.13/G nanocomposites can deliver a capacity of 1200 mA h g(-1) at a current density of 100 mA g(-1), which is much higher than the traditional theoretical specific capacity of such nanocomposites (∼ 702 mA h g(-1)). More importantly, the SnO(2)(GeO(2))0.13/G nanocomposites exhibited an improved rate, large current capability (885 mA h g(-1) at a discharge current of 2000 mA g(-1)) and excellent long cycling stability (almost 100% retention after 600 cycles). The enhanced electrochemical performance was attributed to the catalytic effect of Ge, which enabled the reversible reaction of metals (Sn and Ge) to metals oxide (SnO(2) and GeO(2)) during the charge/discharge processes. Our demonstrated approach towards nanocomposite catalyst engineering opens new avenues for next-generation high-performance rechargeable Li-ion batteries anode materials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigated the influence of different gas environments on the fabrication of surfaces, homogeneously covered with equally sized and spaced micro-structures. Two types of structures have been successfully micro-machined with a femtosecond laser on titanium surfaces in various atmospheres. The surface chemistry of samples machined in oxygen and helium shows TiO2, while machining in nitrogen leads to an additional share of TiN. The actual surface structure was found to vary significantly as a function of the gas environment. We found that the ablated particles and their surface triggered two consecutive events: The optical properties of the gas environment became non-isotropic which then led to the pulse intensity being redistributed throughout the cross section of the laser beam. Additionally, the effective intensity was further reduced for TiN surfaces due to TiN's high reflectivity. Thus, the settings for the applied raster-scanning machining method had to be adjusted for each gas environment to produce comparable structures. In contrast to previous studies, where only noble gases were found suitable to produce homogeneous patches, we obtained them in an oxygen environment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The integration of digital technologies in pedagogy is positioned as an important change in education, but widespread innovative use of digital technologies is yet to be truly realised. The gap between the potential and the reality of digital technology integration is commonly attributed to a range of challenging extrinsic and intrinsic influences. Activity Theory (Engeström, 2009) is used to analyse challenges created by extrinsic influences (Nielsen, Miller, & Hoban, 2012); a complementary theory is needed to conceptualise intrinsic influences. System 1 and System 2 thinking theory (Kahneman, 2011) will be advanced as a conceptual framework for understanding conscious and unconscious aspects of teacher practice, particularly the interaction between innovation and teacher routine, attitudes and beliefs. Transformative Learning Theory (Mezirow, 2009) will be positioned to comprehend the nexus of extrinsic and intrinsic influences. This paper will propose how, when faced with extrinsic and intrinsic influences on innovative practice, educators can use these theories to conceptualise the challenge of integrating digital technologies in pedagogy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Malnutrition is a significant clinical and public health problem. The prevalence of malnutrition was determined in a sample of older people living in 2 residential aged care facilities in Australia. The Subjective Global Assessment tool was used to determine the prevalence of malnutrition in 57 residents. The majority of residents were well nourished (67), 26 moderately malnourished, and 7 severely malnourished. Prevalence of malnutrition was higher for those receiving high-level care (42), but this was not statistically significant (P =.437). No relationship was found between malnutrition status and age (P =.529) or sex (P =.839).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ti3Si(Al)C2 films were electrophoretically deposited at 3 V on indium-tin-oxide (ITO) conductive glass from Ti3Si(Al) C2 aqueous suspension with 1 vol% solid loading at pH 9 in the absence of any dispersant. The surface morphology, cross section microstructure, and preferred orientation of the films were investigated by scanning electron microscopy and X-ray diffraction. The as-deposited Ti3Si(Al)C 2 films exhibited (00l) preferred orientation and the thickness can be controlled by the deposition-drying-deposition method. These results demonstrate that electrophoretic deposition is a simple and feasible method to prepare MAX-phases green films at room temperature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Methylammonium bismuth (III) iodide single crystals and films have been developed and investigated. We have further presented the first demonstration of using this organic–inorganic bismuth-based material to replace lead/tin-based perovskite materials in solution-processable solar cells. The organic–inorganic bismuth-based material has advantages of non-toxicity, ambient stability, and low-temperature solution-processability, which provides a promising solution to address the toxicity and stability challenges in organolead- and organotin-based perovskite solar cells. We also demonstrated that trivalent metal cation-based organic–inorganic hybrid materials can exhibit photovoltaic effect, which may inspire more research work on developing and applying organic-inorganic hybrid materials beyond divalent metal cations (Pb (II) and Sn (II)) for solar energy applications.