112 resultados para bismuth layer
Resumo:
Sputtering and subsequent sulfurization(orselenization)is one of the methods that have been extensively employed to fabricate Cu2ZnSn(S,Se)4 (CZTSSe) thin films. However, there are limited reports on the effect of precursor stacking order of the sputtered source materials on the properties of the synthesized CZTSSe films. In this work,the morphology and crystallization process of the CZTSSe films which were prepared by selenizing Cu–ZnS–SnS precursor layers with different stacking sequences and the adhesion property between the as-synthesized CZTSSe layer and Mosubstrate have been thoroughly investigated. It has been found that the growth of CZTSSe material and the morphology of the film strongly depend on the location of Culayer in the precursor film. The formation of CZTSSe starts from the diffusion of Cu–Se to Sn(S,Se)layert o form Cu–Sn–(S,Se) compound,followed by the reaction with Zn(S,Se). The investigation of themorphology of the CZTSSe films has shown that large grains are formed in the film with the precursor stacking order of Mo/SnS/ZnS/Cu,which is attributed to a bottom-to-top growth mechanism. In contrast, the film made from a precursor with a stacking sequence of Mo/ZnS/ SnS/Cu is mainly consisted of small grains due to a top-to-bottom growth mechanism. The best CZTSSe solar cell with energy conversion efficiency of3.35%has been achieved with the selenized Mo/ZnS/ SnS/Cu film, which is attributed to a good contact between the absorber layer and the Mosubstrate.
Resumo:
Graphitic like layered materials exhibit intriguing electronic structures and thus the search for new types of two-dimensional (2D) monolayer materials is of great interest for developing novel nano-devices. By using density functional theory (DFT) method, here we for the first time investigate the structure, stability, electronic and optical properties of monolayer lead iodide (PbI2). The stability of PbI2 monolayer is first confirmed by phonon dispersion calculation. Compared to the calculation using generalized gradient approximation, screened hybrid functional and spin–orbit coupling effects can not only predicts an accurate bandgap (2.63 eV), but also the correct position of valence and conduction band edges. The biaxial strain can tune its bandgap size in a wide range from 1 eV to 3 eV, which can be understood by the strain induced uniformly change of electric field between Pb and I atomic layer. The calculated imaginary part of the dielectric function of 2D graphene/PbI2 van der Waals type hetero-structure shows significant red shift of absorption edge compared to that of a pure monolayer PbI2. Our findings highlight a new interesting 2D material with potential applications in nanoelectronics and optoelectronics.
Resumo:
An innovative cement-based soft-hard-soft (SHS) multi-layer composite has been developed for protective infrastructures. Such composite consists of three layers including asphalt concrete (AC), high strength concrete (HSC), and engineered cementitious composites (ECC). A three dimensional benchmark numerical model for this SHS composite as pavement under blast load was established using LSDYNA and validated by field blast test. Parametric studies were carried out to investigate the influence of a few key parameters including thickness and strength of HSC and ECC layers, interface properties, soil conditions on the blast resistance of the composite. The outcomes of this study also enabled the establishment of a damage pattern chart for protective pavement design and rapid repair after blast load. Efficient methods to further improve the blast resistance of the SHS multi-layer pavement system were also recommended.
Resumo:
Particle analysis methodology is presented, together with the morphology of the wear debris formed during rolling contact fatigue. Wear particles are characterised by their surface topography and in terms of wear mechanism. Rail-wheel materials are subjected to severe plastic deformation as the contact loading progresses, which contributes to a mechanism of major damage in head-hardened rail steel. Most of the current methodologies involve sectioning of the rail-wheel discs to trace material damage phenomena such as crack propagation and plastic strain accumulation. This paper proposes methodology to analyse the development of the plastically deformed layer by sectioning wear particles using the focussed ion beam (FIB) milling method. Moreover, it highlights the processes of oxidation and rail surface delamination during unlubricated rolling contact fatigue.
Resumo:
In this paper we image the highly confined long range plasmons of a nanoscale metal stripe waveguide using quantum emitters. Plasmons were excited using a highly focused 633 nm laser beam and a specially designed grating structure to provide stronger incoupling to the desired mode. A homogeneous thin layer of quantum dots was used to image the near field intensity of the propagating plasmons on the waveguide. We observed that the photoluminescence is quenched when the QD to metal surface distance is less than 10 nm. The optimised spacer layer thickness for the stripe waveguides was found to be around 20 nm. Authors believe that the findings of this paper prove beneficial for the development of plasmonic devices utilising stripe waveguides.
Resumo:
In this article, natural convection boundary layer flow is investigated over a semi-infinite horizontal wavy surface. Such an irregular (wavy) surface is used to exchange heat with an external radiating fluid which obeys Rosseland diffusion approximation. The boundary layer equations are cast into dimensionless form by introducing appropriate scaling. Primitive variable formulations (PVF) and stream function formulations (SFF) are independently used to transform the boundary layer equations into convenient form. The equations obtained from the former formulations are integrated numerically via implicit finite difference iterative scheme whereas equations obtained from lateral formulations are simulated through Keller-box scheme. To validate the results, solutions produced by above two methods are compared graphically. The main parameters: thermal radiation parameter and amplitude of the wavy surface are discussed categorically in terms of shear stress and rate of heat transfer. It is found that wavy surface increases heat transfer rate compared to the smooth wall. Thus optimum heat transfer is accomplished when irregular surface is considered. It is also established that high amplitude of the wavy surface in the boundary layer leads to separation of fluid from the plate.
Resumo:
Experimental studies of Bi heteroepitaxy on Si(001) have recently uncovered a self-organised nanoline motif which has no detectable width dispersion. The Bi lines can be grown with an aspect ratio that is greater than 350 : 1. This paper describes a study of the nanoline geometry and electronic structure using a combination of scanning tunneling microscopy (STM) and ab initio theoretical methods. In particular, the effect that the lines have on Si(001) surface structure at large length scales, l > 100 nm, is studied. It has been found that Bi line growth on surfaces that have regularly spaced single height steps results in a 'preferred' domain orientation.
Resumo:
The adsorption of In on the Si(111)−Ge(5×5) surface reconstruction has been studied with scanning tunneling microscopy and ab initio calculations to investigate the possibility of using this reconstruction as a template for cluster formation. As with In adsorption on Si(111)−7×7 at low substrate temperatures and low In fluences, the In adatoms are found to preferentially adsorb on the faulted half-unit cell. However, in contrast to In adsorption on Si(111)−7×7, the In adatoms are also frequently found in the unfaulted half-unit cell at low coverages. The filling of unfaulted unit cell halves is primarily due to the formation of large clusters that span multiple substrate half-unit cells. Moreover, many of the faulted half-unit cells have a streaked appearance that indicates that surface atoms within them are mobile.
Resumo:
By using electric-field-induced optical second-harmonic generation (EFISHG) measurement, we analyzed hysteresis behavior of capacitance-voltage (C-V) characteristics of IZO/polyterpenol (PT)/C₆₀/pentacene/Au diodes, where PT layer is actively working as a hole-transport electron-blocking layer. The EFISHG measurement verified the presence of interface accumulated charges in the diodes, and showed that a space charge electric field from accumulated excess electrons (holes) that remain at the PT/C₆₀ (C₆₀/pentacene) interface is responsible for the hysteresis loop observed in the C-V characteristics.
Resumo:
Time-resolved electric field induced second harmonic generation technique was used to probe the carrier transients within double-layer pentacene-based MIM devices. Polyterpenol thin films fabricated from non-synthetic environmentally sustainable source were used as a blocking layer to assist in visualisation of single-species carrier transportation during charging and discharging under different bias conditions. Results demonstrated that carrier transients were comprised of charging on electrodes, followed by carrier injection and charging of the interface. Polyterpenol was demonstrated to be a sound blocking material and can therefore be effectively used for probing of double-layer devices using EFISHG.
Resumo:
A non-synthetic polymer material, polyterpenol, was fabricated using a dry polymerization process namely RF plasma polymerization from an environmentally friendly monomer and its surface, optical and electrical properties investigated. Polyterpenol films were found to be transparent over the visible wavelength range, with a smooth surface with an average roughness of less than 0.4 nm and hardness of 0.4 GPa. The dielectric constant of 3.4 for polyterpenol was higher than that of the conventional polymer materials used in the organic electronic devices. The non-synthetic polymer material was then implemented as a surface modification of the gate insulator in field effect transistor (OFET) and the properties of the device were examined. In comparison to the similar device without the polymer insulating layer, the polyterpenol based OFET device showed significant improvements. The addition of the polyterpenol interlayer in the OFET shifted the threshold voltage significantly; + 20 V to -3 V. The presence of trapped charge was not observed in the polyterpenol interlayer. This assisted in the improvement of effective mobility from 0.012 to 0.021 cm 2/Vs. The switching property of the polyterpenol based OFET was also improved; 107 compared to 104. The results showed that the non-synthetic polyterpenol polymer film is a promising candidate of insulators in electronic devices.
Spray deposition of exfoliated MoS2 flakes as hole transport layer in perovskite-based photovoltaics
Resumo:
We propose the use of solution-processed molybdenum disulfide (MoS2) flakes as hole transport layer (HTL) for metal-organic perovskite solar cells. MoS2 bulk crystals are exfoliated in 2-propanol and deposited on perovskite layers by spray coating. We fabricated cells with glass/FTO/compact-TiO2/mesoporous-TiO2/CH3NH3PbI3/spiro- OMeTAD/Au structure and cells with the same structure but with MoS2 flakes as HTL instead of spiro-OMeTAD, the most widely used HTL. The electrical characterization of the cells with MoS2 as HTL show promising power conversion efficiency -η- of 3.9% with respect to cells with pristine spiro-OMeTAD (η=3.1%). Endurance test on 800-hour shelf life has shown higher stability for the MoS2–based cells (ΔPCE/PCE=-17%) with respect to the doped spiro-OMeTAD-based one (ΔPCE/PCE =-45%). Further improvements are expected with the optimization of the MoS2 deposition process
Resumo:
Few-layer graphene films were grown by chemical vapor deposition and transferred onto n-type crystalline silicon wafers to fabricate graphene/n-silicon Schottky barrier solar cells. In order to increase the power conversion efficiency of such cells the graphene films were doped with nitric acid vapor and an antireflection treatment was implemented to reduce the sunlight reflection on the top of the device. The doping process increased the work function of the graphene film and had a beneficial effect on its conductivity. The deposition of a double antireflection coating led to an external quantum efficiency up to 90% across the visible and near infrared region, the highest ever reported for this type of devices. The combined effect of graphene doping and antireflection treatment allowed to reach a power conversion efficiency of 8.5% exceeding the pristine (undoped and uncoated) device performance by a factor of 4. The optical properties of the antireflection coating were found to be not affected by the exposure to nitric acid vapor and to remain stable over time.
Resumo:
A computer code is developed for the numerical prediction of natural convection in rectangular two-dimensional cavities at high Rayleigh numbers. The governing equations are retained in the primitive variable form. The numerical method is based on finite differences and an ADI scheme. Convective terms may be approximated with either central or hybrid differencing for greater stability. A non-uniform grid distribution is possible for greater efficiency. The pressure is dealt with via a SIMPLE type algorithm and the use of a fast elliptic solver for the solenoidal velocity correction field significantly reduces computing times. Preliminary results indicate that the code is reasonably accurate, robust and fast compared with existing benchmarks and finite difference based codes, particularly at high Rayleigh numbers. Extension to three-dimensional problems and turbulence studies in similar geometries is readily possible and indicated.
Resumo:
Numerical predictions are obtained for laminar natural convection of air in a square two dimensional cavity at high Rayleigh numbers. Proper resolution of the core reveals weak multi-cellular structure which varies in a complex manner as the effects of convection are increased. The end of the steady laminar regime is numerically estimated to occur at Ra=2.2x10^8.