154 resultados para Visione, flusso ottico, autopilota, algoritmo, Smart Camera, Sonar, giroscopio
Resumo:
Energy policy is driving renewable energy deployment with most of the developed countries having some form of renewable energy portfolio standard and emissions reduction target. To deliver upon these ambitious targets, those renewable energy technologies that are commercially available, such as wind and solar, are being deployed, but inherently have issues with intermittency of supply. To overcome these issues, storage options will need to be introduced into the distribution network with benefits for both demand management and power systems quality. How this can be utilised most effectively within the distribution network will allow for an even greater proportion of our energy demand to be met through renewable resources and meet the aspirational targets set. The distribution network will become a network of smart-grids, but to work efficiently and effectively, power quality issues surrounding intermittency must be overcome, with storage being a major factor in this solution.
Resumo:
The aims of this project is to develop demand side response model which assists electricity consumers who are exposed to the market price through aggregator to manage the air-conditioning peak electricity demand. The main contribution of this research is to show how consumers can optimise the energy cost caused by the air-conditioning load considering the electricity market price and network overload. The model is tested with selected characteristics of the room, Queensland electricity market data from Australian Energy Market Operator and data from the Bureau of Statistics on temperatures in Brisbane, during weekdays on hot days from 2011 - 2012.
Resumo:
The research seeks to understand the nature of law and justice students’ use of technology for their learning purposes. There is often an assumption made that all students have, and engage with, technology to the same degree. The research tests these assumptions by means of a survey conducted of first year law and justice students to determine their actual use of smart devices inside and outside classes. The analysis of results reveals that while the majority of respondents own at least one smart device; most rarely use their device for their learning purposes.
Resumo:
Besides responding to challenges of rapid urbanization and growing traffic congestion, the development of smart transport systems has attracted much attention in recent times. Many promising initiatives have emerged over the years. Despite these initiatives, there is still a lack of understanding about an appropriate definition of smart transport system. As such, it is challenging to identify the appropriate indicators of ‘smartness’. This paper proposes a comprehensive and practical framework to benchmark cities according to the smartness in their transportation systems. The proposed methodology was illustrated using a set of data collected from 26 cities across the world through web search and contacting relevant transport authorities and agencies. Results showed that London, Seattle and Sydney were among the world’s top smart transport cities. In particular, Seattle and Paris ranked high in smart private transport services while London and Singapore scored high on public transport services. London also appeared to be the smartest in terms of emergency transport services. The key value of the proposed innovative framework lies in a comparative analysis among cities, facilitating city-to-city learning.
Resumo:
In this paper, we present SMART (Sequence Matching Across Route Traversals): a vision- based place recognition system that uses whole image matching techniques and odometry information to improve the precision-recall performance, latency and general applicability of the SeqSLAM algorithm. We evaluate the system’s performance on challenging day and night journeys over several kilometres at widely varying vehicle velocities from 0 to 60 km/h, compare performance to the current state-of- the-art SeqSLAM algorithm, and provide parameter studies that evaluate the effectiveness of each system component. Using 30-metre sequences, SMART achieves place recognition performance of 81% recall at 100% precision, outperforming SeqSLAM, and is robust to significant degradations in odometry.
Resumo:
Located in the Gulf of Mexico in nearly 8,000 feet of water, the Perdido development is the world’s deepest spar and Shell’s first Smart Field in the Western hemisphere. Jointly developed by Shell, BP, and Chevron, the spar and the subsea equipment connected to it will eventually capture approximately an order of magnitude more data than is collected from any other Shell-designed and managed development currently operating in the Gulf of Mexico. This paper will describe Shell’s Smart Fields design philosophy, briefly explain the five design elements that underpin “smartness” in Shell’s North and South American operations—specifically, remote assisted operations, exception-based surveillance, collaborative work environments, hydrocarbon development tools and workflows, and Smart Fields Foundation IT infrastructure—and shed light on the process by which a highly customized Smart Fields development and management plan was put together for Perdido.
Resumo:
This paper addresses challenges part of the shift of paradigm taking place in the way we produce, transmit and use power related to what is known as smart grids. The aim of this paper is to explore present initiatives to establish smart grids as a sustainable and reliable power supply system. We argue that smart grids are not isolated to abstract conceptual models alone. We suggest that establishing sustainable and reliable smart grids depend on series of contributions including modeling and simulation projects, technological infrastructure pilots, systemic methods and training, and not least how these and other elements must interact to add reality to the conceptual models. We present and discuss three initiatives that illuminate smart grids from three very different positions. First, the new power grid simulator project in the electrical engineering PhD program at Queensland University of Technology (QUT). Second, the new smart grids infrastructure pilot run by the Norwegian Centers of Expertise Smart Energy Markets (NCE SMART). And third, the new systemic Master program on next generation energy technology at østfold University College (Hiø). These initiatives represent future threads in a mesh embedding smart grids in models, technology, infrastructure, education, skills and people.
Resumo:
The selection of optimal camera configurations (camera locations, orientations, etc.) for multi-camera networks remains an unsolved problem. Previous approaches largely focus on proposing various objective functions to achieve different tasks. Most of them, however, do not generalize well to large scale networks. To tackle this, we propose a statistical framework of the problem as well as propose a trans-dimensional simulated annealing algorithm to effectively deal with it. We compare our approach with a state-of-the-art method based on binary integer programming (BIP) and show that our approach offers similar performance on small scale problems. However, we also demonstrate the capability of our approach in dealing with large scale problems and show that our approach produces better results than two alternative heuristics designed to deal with the scalability issue of BIP. Last, we show the versatility of our approach using a number of specific scenarios.
Resumo:
Transit passenger market segmentation enables transit operators to target different classes of transit users to provide customized information and services. The Smart Card (SC) data, from Automated Fare Collection system, facilitates the understanding of multiday travel regularity of transit passengers, and can be used to segment them into identifiable classes of similar behaviors and needs. However, the use of SC data for market segmentation has attracted very limited attention in the literature. This paper proposes a novel methodology for mining spatial and temporal travel regularity from each individual passenger’s historical SC transactions and segments them into four segments of transit users. After reconstructing the travel itineraries from historical SC transactions, the paper adopts the Density-Based Spatial Clustering of Application with Noise (DBSCAN) algorithm to mine travel regularity of each SC user. The travel regularity is then used to segment SC users by an a priori market segmentation approach. The methodology proposed in this paper assists transit operators to understand their passengers and provide them oriented information and services.
Resumo:
At the highest level of competitive sport, nearly all performances of athletes (both training and competitive) are chronicled using video. Video is then often viewed by expert coaches/analysts who then manually label important performance indicators to gauge performance. Stroke-rate and pacing are important performance measures in swimming, and these are previously digitised manually by a human. This is problematic as annotating large volumes of video can be costly, and time-consuming. Further, since it is difficult to accurately estimate the position of the swimmer at each frame, measures such as stroke rate are generally aggregated over an entire swimming lap. Vision-based techniques which can automatically, objectively and reliably track the swimmer and their location can potentially solve these issues and allow for large-scale analysis of a swimmer across many videos. However, the aquatic environment is challenging due to fluctuations in scene from splashes, reflections and because swimmers are frequently submerged at different points in a race. In this paper, we temporally segment races into distinct and sequential states, and propose a multimodal approach which employs individual detectors tuned to each race state. Our approach allows the swimmer to be located and tracked smoothly in each frame despite a diverse range of constraints. We test our approach on a video dataset compiled at the 2012 Australian Short Course Swimming Championships.
Resumo:
Camera-laser calibration is necessary for many robotics and computer vision applications. However, existing calibration toolboxes still require laborious effort from the operator in order to achieve reliable and accurate results. This paper proposes algorithms that augment two existing trustful calibration methods with an automatic extraction of the calibration object from the sensor data. The result is a complete procedure that allows for automatic camera-laser calibration. The first stage of the procedure is automatic camera calibration which is useful in its own right for many applications. The chessboard extraction algorithm it provides is shown to outperform openly available techniques. The second stage completes the procedure by providing automatic camera-laser calibration. The procedure has been verified by extensive experimental tests with the proposed algorithms providing a major reduction in time required from an operator in comparison to manual methods.
Resumo:
This work aims to promote integrity in autonomous perceptual systems, with a focus on outdoor unmanned ground vehicles equipped with a camera and a 2D laser range finder. A method to check for inconsistencies between the data provided by these two heterogeneous sensors is proposed and discussed. First, uncertainties in the estimated transformation between the laser and camera frames are evaluated and propagated up to the projection of the laser points onto the image. Then, for each pair of laser scan-camera image acquired, the information at corners of the laser scan is compared with the content of the image, resulting in a likelihood of correspondence. The result of this process is then used to validate segments of the laser scan that are found to be consistent with the image, while inconsistent segments are rejected. Experimental results illustrate how this technique can improve the reliability of perception in challenging environmental conditions, such as in the presence of airborne dust.
Resumo:
Many applications can benefit from the accurate surface temperature estimates that can be made using a passive thermal-infrared camera. However, the process of radiometric calibration which enables this can be both expensive and time consuming. An ad hoc approach for performing radiometric calibration is proposed which does not require specialized equipment and can be completed in a fraction of the time of the conventional method. The proposed approach utilizes the mechanical properties of the camera to estimate scene temperatures automatically, and uses these target temperatures to model the effect of sensor temperature on the digital output. A comparison with a conventional approach using a blackbody radiation source shows that the accuracy of the method is sufficient for many tasks requiring temperature estimation. Furthermore, a novel visualization method is proposed for displaying the radiometrically calibrated images to human operators. The representation employs an intuitive coloring scheme and allows the viewer to perceive a large variety of temperatures accurately.
Resumo:
In this paper, the inherent mechanism of benefits associated with smart grid development is examined based on the Pressure-State-Response (PSR) model from resource economics. The emerging types of technology brought up by smart grid development are taken as pressures. The improvements of the performance and efficiency of power system operation are taken as states. The effects of smart grid development on society are taken as responses. Then, a novel method for evaluating social benefits in energy saving and CO2 emission reduction from smart grid development is presented. Finally, the benefits in a province in northwest China is carried out by employing the developed evaluation system, and reasonable evaluation results are attained.
Resumo:
Solutions to remedy the voltage disturbances have been mostly suggested only for industrial customers. However, not much research has been done on the impact of the voltage problems on residential facilities. This paper proposes a new method to reduce the effect of voltage dip and swell in smart grids equipped by communication systems. To reach this purpose, a voltage source inverter and the corresponding control system are employed. The behavior of a power system during voltage dip and swell are analyzed. The results demonstrate reasonable improvement in terms of voltage dip and swell mitigation. All simulations are implemented in MATLAB/Simulink environment.