358 resultados para THEORETICAL PREDICTION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

There has been a worldwide trend to increase axle loads and train speeds. This means that railway track degradation will be accelerated, and track maintenance costs will be increased significantly. There is a need to investigate the consequences of increasing traffic load. The aim of the research is to develop a model for the analysis of physical degradation of railway tracks in response to changes in traffic parameters, especially increased axle loads and train speeds. This research has developed an integrated track degradation model (ITDM) by integrating several models into a comprehensive framework. Mechanistic relationships for track degradation hav~ ?een used wherever possible in each of the models contained in ITDM. This overcc:mes the deficiency of the traditional statistical track models which rely heavily on historical degradation data, which is generally not available in many railway systems. In addition statistical models lack the flexibility of incorporating future changes in traffic patterns or maintenance practices. The research starts with reviewing railway track related studies both in Australia and overseas to develop a comprehensive understanding of track performance under various traffic conditions. Existing railway related models are then examined for their suitability for track degradation analysis for Australian situations. The ITDM model is subsequently developed by modifying suitable existing models, and developing new models where necessary. The ITDM model contains four interrelated submodels for rails, sleepers, ballast and subgrade, and track modulus. The rail submodel is for rail wear analysis and is developed from a theoretical concept. The sleeper submodel is for timber sleepers damage prediction. The submodel is developed by modifying and extending an existing model developed elsewhere. The submodel has also incorporated an analysis for the likelihood of concrete sleeper cracking. The ballast and subgrade submodel is evolved from a concept developed in the USA. Substantial modifications and improvements have been made. The track modulus submodel is developed from a conceptual method. Corrections for more global track conditions have been made. The integration of these submodels into one comprehensive package has enabled the interaction between individual track components to be taken into account. This is done by calculating wheel load distribution with time and updating track conditions periodically in the process of track degradation simulation. A Windows-based computer program ~ssociated with ITDM has also been developed. The program enables the user to carry out analysis of degradation of individual track components and to investigate the inter relationships between these track components and their deterioration. The successful implementation of this research has provided essential information for prediction of increased maintenance as a consequence of railway trackdegradation. The model, having been presented at various conferences and seminars, has attracted wide interest. It is anticipated that the model will be put into practical use among Australian railways, enabling track maintenance planning to be optimized and potentially saving Australian railway systems millions of dollars in operating costs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The studies in the thesis were derived from a program of research focused on centre-based child care in Australia. The studies constituted an ecological analysis as they examined proximal and distal factors which have the potential to affect children's developmental opportunities (Bronfenbrenner, 1979). The project was conducted in thirty-two child care centres located in south-east Queensland. Participants in the research included staff members at the centres, families using the centres and their children. The first study described the personal and professional characteristics of one hundred and forty-four child care workers, as well as their job satisfaction and job commitment. Factors impinging on the stability of care afforded to children were examined, specifically child care workers' intentions to leave their current position and actual staff turnover at a twelve month follow-up. This is an ecosystem analysis (Bronfenbrenner & Crouter, 1983), as it examined the world of work for carers; a setting not directly involving the developing child, but which has implications for children's experiences. Staff job satisfaction was focused on working with children and other adults, including parents and colleagues. Involvement with children was reported as being the most rewarding aspect of the work. This intrinsic satisfaction was enough to sustain caregivers' efforts to maintain their employment in child care programs. It was found that, while improving working conditions may help to reduce turnover, it is likely that moderate turnover rates will remain as child care staff work in relatively small centres and they leave in order to improve career prospects. Departure from a child care job appeared to be as much about improving career opportunities or changing personal circumstances, as it was about poor wages and working conditions. In the second study, factors that influence maternal satisfaction with child care arrangements were examined. The focus included examination of the nature and qualities of parental interaction with staff. This was a mesosystem analysis (Bronfenbrenner & Crouter, 1983), as it considered the links between family and child care settings. Two hundred and twenty-two questionnaires were returned from mothers whose children were enrolled in the participating centres. It was found that maternal satisfaction with child care encompassed the domains of child-centred and parent-centred satisfaction. The nature and range of responses in the quantitative and qualitative data indicated that these parents were genuinely satisfied with their children's care. In the prediction of maternal satisfaction with child care, single parents, mothers with high role satisfaction, and mothers who were satisfied with the frequency of staff contact and degree of supportive communication had higher levels of satisfaction with their child care arrangements. The third study described the structural and process variations within child care programs and examined program differences for compliance with regulations and differences by profit status of the centre, as a microsystem analysis (Bronfenbrenner, 1979). Observations were made in eighty-three programs which served children from two to five years. The results of the study affirmed beliefs that nonprofit centres are superior in the quality of care provided, although this was not to a level which meant that the care in for-profit centres was inadequate. Regulation of structural features of child care programs, per se, did not guarantee higher quality child care as measured by global or process indicators. The final study represented an integration of a range of influences in child care and family settings which may impact on development. Features of child care programs which predict children's social and cognitive development, while taking into account child and family characteristics, were identified. Results were consistent with other research findings which show that child and family characteristics and child care quality predict children's development. Child care quality was more important to the prediction of social development, while family factors appeared to be more predictive of cognitive/language development. An influential variable predictive of development was the period of time which the child had been in the centre. This highlighted the importance of the stability of child care arrangements. Child care quality features which had most influence were global ratings of the qualities of the program environment. However, results need to be interpreted cautiously as the explained variance in the predictive models developed was low. The results of these studies are discussed in terms of the implications for practice and future research. Considerations for an expanded view of ecological approaches to child care research are outlined. Issues discussed include the need to generate child care research which is relevant to social policy development, the implications of market driven policies for child care services, professionalism and professionalisation of child care work, and the need to reconceptualise child care research when the goal is to develop greater theoretical understanding about child care environments and developmental processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bioelectrical impedance analysis, (BIA), is a method of body composition analysis first investigated in 1962 which has recently received much attention by a number of research groups. The reasons for this recent interest are its advantages, (viz: inexpensive, non-invasive and portable) and also the increasing interest in the diagnostic value of body composition analysis. The concept utilised by BIA to predict body water volumes is the proportional relationship for a simple cylindrical conductor, (volume oc length2/resistance), which allows the volume to be predicted from the measured resistance and length. Most of the research to date has measured the body's resistance to the passage of a 50· kHz AC current to predict total body water, (TBW). Several research groups have investigated the application of AC currents at lower frequencies, (eg 5 kHz), to predict extracellular water, (ECW). However all research to date using BIA to predict body water volumes has used the impedance measured at a discrete frequency or frequencies. This thesis investigates the variation of impedance and phase of biological systems over a range of frequencies and describes the development of a swept frequency bioimpedance meter which measures impedance and phase at 496 frequencies ranging from 4 kHz to 1 MHz. The impedance of any biological system varies with the frequency of the applied current. The graph of reactance vs resistance yields a circular arc with the resistance decreasing with increasing frequency and reactance increasing from zero to a maximum then decreasing to zero. Computer programs were written to analyse the measured impedance spectrum and determine the impedance, Zc, at the characteristic frequency, (the frequency at which the reactance is a maximum). The fitted locus of the measured data was extrapolated to determine the resistance, Ro, at zero frequency; a value that cannot be measured directly using surface electrodes. The explanation of the theoretical basis for selecting these impedance values (Zc and Ro), to predict TBW and ECW is presented. Studies were conducted on a group of normal healthy animals, (n=42), in which TBW and ECW were determined by the gold standard of isotope dilution. The prediction quotients L2/Zc and L2/Ro, (L=length), yielded standard errors of 4.2% and 3.2% respectively, and were found to be significantly better than previously reported, empirically determined prediction quotients derived from measurements at a single frequency. The prediction equations established in this group of normal healthy animals were applied to a group of animals with abnormally low fluid levels, (n=20), and also to a group with an abnormal balance of extra-cellular to intracellular fluids, (n=20). In both cases the equations using L2/Zc and L2/Ro accurately and precisely predicted TBW and ECW. This demonstrated that the technique developed using multiple frequency bioelectrical impedance analysis, (MFBIA), can accurately predict both TBW and ECW in both normal and abnormal animals, (with standard errors of the estimate of 6% and 3% for TBW and ECW respectively). Isotope dilution techniques were used to determine TBW and ECW in a group of 60 healthy human subjects, (male. and female, aged between 18 and 45). Whole body impedance measurements were recorded on each subject using the MFBIA technique and the correlations between body water volumes, (TBW and ECW), and heighe/impedance, (for all measured frequencies), were compared. The prediction quotients H2/Zc and H2/Ro, (H=height), again yielded the highest correlation with TBW and ECW respectively with corresponding standard errors of 5.2% and 10%. The values of the correlation coefficients obtained in this study were very similar to those recently reported by others. It was also observed that in healthy human subjects the impedance measured at virtually any frequency yielded correlations not significantly different from those obtained from the MFBIA quotients. This phenomenon has been reported by other research groups and emphasises the need to validate the technique by investigating its application in one or more groups with abnormalities in fluid levels. The clinical application of MFBIA was trialled and its capability of detecting lymphoedema, (an excess of extracellular fluid), was investigated. The MFBIA technique was demonstrated to be significantly more sensitive, (P<.05), in detecting lymphoedema than the current technique of circumferential measurements. MFBIA was also shown to provide valuable information describing the changes in the quantity of muscle mass of the patient during the course of the treatment. The determination of body composition, (viz TBW and ECW), by MFBIA has been shown to be a significant improvement on previous bioelectrical impedance techniques. The merit of the MFBIA technique is evidenced in its accurate, precise and valid application in animal groups with a wide variation in body fluid volumes and balances. The multiple frequency bioelectrical impedance analysis technique developed in this study provides accurate and precise estimates of body composition, (viz TBW and ECW), regardless of the individual's state of health.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a travel time prediction model and evaluates its performance and transferability. Advanced Travelers Information Systems (ATIS) are gaining more and more importance, increasing the need for accurate, timely and useful information to the travelers. Travel time information quantifies the traffic condition in an easy to understand way for the users. The proposed travel time prediction model is based on an efficient use of nearest neighbor search. The model is calibrated for optimal performance using Genetic Algorithms. Results indicate better performance by using the proposed model than the presently used naïve model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One major gap in transportation system safety management is the ability to assess the safety ramifications of design changes for both new road projects and modifications to existing roads. To fulfill this need, FHWA and its many partners are developing a safety forecasting tool, the Interactive Highway Safety Design Model (IHSDM). The tool will be used by roadway design engineers, safety analysts, and planners throughout the United States. As such, the statistical models embedded in IHSDM will need to be able to forecast safety impacts under a wide range of roadway configurations and environmental conditions for a wide range of driver populations and will need to be able to capture elements of driving risk across states. One of the IHSDM algorithms developed by FHWA and its contractors is for forecasting accidents on rural road segments and rural intersections. The methodological approach is to use predictive models for specific base conditions, with traffic volume information as the sole explanatory variable for crashes, and then to apply regional or state calibration factors and accident modification factors (AMFs) to estimate the impact on accidents of geometric characteristics that differ from the base model conditions. In the majority of past approaches, AMFs are derived from parameter estimates associated with the explanatory variables. A recent study for FHWA used a multistate database to examine in detail the use of the algorithm with the base model-AMF approach and explored alternative base model forms as well as the use of full models that included nontraffic-related variables and other approaches to estimate AMFs. That research effort is reported. The results support the IHSDM methodology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Predictions that result from scientific research hold great appeal for decision-makers who are grappling with complex and controversial environmental issues, by promising to enhance their ability to determine a need for and outcomes of alternative decisions. A problem exists in that decision-makers and scientists in the public and private sectors solicit, produce, and use such predictions with little understanding of their accuracy or utility, and often without systematic evaluation or mechanisms of accountability. In order to contribute to a more effective role for ecological science in support of decision-making, this paper discusses three ``best practices'' for quantitative ecosystem modeling and prediction gleaned from research on modeling, prediction, and decision-making in the atmospheric and earth sciences. The lessons are distilled from a series of case studies and placed into the specific context of examples from ecological science.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Statistical modeling of traffic crashes has been of interest to researchers for decades. Over the most recent decade many crash models have accounted for extra-variation in crash counts—variation over and above that accounted for by the Poisson density. The extra-variation – or dispersion – is theorized to capture unaccounted for variation in crashes across sites. The majority of studies have assumed fixed dispersion parameters in over-dispersed crash models—tantamount to assuming that unaccounted for variation is proportional to the expected crash count. Miaou and Lord [Miaou, S.P., Lord, D., 2003. Modeling traffic crash-flow relationships for intersections: dispersion parameter, functional form, and Bayes versus empirical Bayes methods. Transport. Res. Rec. 1840, 31–40] challenged the fixed dispersion parameter assumption, and examined various dispersion parameter relationships when modeling urban signalized intersection accidents in Toronto. They suggested that further work is needed to determine the appropriateness of the findings for rural as well as other intersection types, to corroborate their findings, and to explore alternative dispersion functions. This study builds upon the work of Miaou and Lord, with exploration of additional dispersion functions, the use of an independent data set, and presents an opportunity to corroborate their findings. Data from Georgia are used in this study. A Bayesian modeling approach with non-informative priors is adopted, using sampling-based estimation via Markov Chain Monte Carlo (MCMC) and the Gibbs sampler. A total of eight model specifications were developed; four of them employed traffic flows as explanatory factors in mean structure while the remainder of them included geometric factors in addition to major and minor road traffic flows. The models were compared and contrasted using the significance of coefficients, standard deviance, chi-square goodness-of-fit, and deviance information criteria (DIC) statistics. The findings indicate that the modeling of the dispersion parameter, which essentially explains the extra-variance structure, depends greatly on how the mean structure is modeled. In the presence of a well-defined mean function, the extra-variance structure generally becomes insignificant, i.e. the variance structure is a simple function of the mean. It appears that extra-variation is a function of covariates when the mean structure (expected crash count) is poorly specified and suffers from omitted variables. In contrast, when sufficient explanatory variables are used to model the mean (expected crash count), extra-Poisson variation is not significantly related to these variables. If these results are generalizable, they suggest that model specification may be improved by testing extra-variation functions for significance. They also suggest that known influences of expected crash counts are likely to be different than factors that might help to explain unaccounted for variation in crashes across sites

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Predicting safety on roadways is standard practice for road safety professionals and has a corresponding extensive literature. The majority of safety prediction models are estimated using roadway segment and intersection (microscale) data, while more recently efforts have been undertaken to predict safety at the planning level (macroscale). Safety prediction models typically include roadway, operations, and exposure variables—factors known to affect safety in fundamental ways. Environmental variables, in particular variables attempting to capture the effect of rain on road safety, are difficult to obtain and have rarely been considered. In the few cases weather variables have been included, historical averages rather than actual weather conditions during which crashes are observed have been used. Without the inclusion of weather related variables researchers have had difficulty explaining regional differences in the safety performance of various entities (e.g. intersections, road segments, highways, etc.) As part of the NCHRP 8-44 research effort, researchers developed PLANSAFE, or planning level safety prediction models. These models make use of socio-economic, demographic, and roadway variables for predicting planning level safety. Accounting for regional differences - similar to the experience for microscale safety models - has been problematic during the development of planning level safety prediction models. More specifically, without weather related variables there is an insufficient set of variables for explaining safety differences across regions and states. Furthermore, omitted variable bias resulting from excluding these important variables may adversely impact the coefficients of included variables, thus contributing to difficulty in model interpretation and accuracy. This paper summarizes the results of an effort to include weather related variables, particularly various measures of rainfall, into accident frequency prediction and the prediction of the frequency of fatal and/or injury degree of severity crash models. The purpose of the study was to determine whether these variables do in fact improve overall goodness of fit of the models, whether these variables may explain some or all of observed regional differences, and identifying the estimated effects of rainfall on safety. The models are based on Traffic Analysis Zone level datasets from Michigan, and Pima and Maricopa Counties in Arizona. Numerous rain-related variables were found to be statistically significant, selected rain related variables improved the overall goodness of fit, and inclusion of these variables reduced the portion of the model explained by the constant in the base models without weather variables. Rain tends to diminish safety, as expected, in fairly complex ways, depending on rain frequency and intensity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Considerable past research has explored relationships between vehicle accidents and geometric design and operation of road sections, but relatively little research has examined factors that contribute to accidents at railway-highway crossings. Between 1998 and 2002 in Korea, about 95% of railway accidents occurred at highway-rail grade crossings, resulting in 402 accidents, of which about 20% resulted in fatalities. These statistics suggest that efforts to reduce crashes at these locations may significantly reduce crash costs. The objective of this paper is to examine factors associated with railroad crossing crashes. Various statistical models are used to examine the relationships between crossing accidents and features of crossings. The paper also compares accident models developed in the United States and the safety effects of crossing elements obtained using Korea data. Crashes were observed to increase with total traffic volume and average daily train volumes. The proximity of crossings to commercial areas and the distance of the train detector from crossings are associated with larger numbers of accidents, as is the time duration between the activation of warning signals and gates. The unique contributions of the paper are the application of the gamma probability model to deal with underdispersion and the insights obtained regarding railroad crossing related vehicle crashes. Considerable past research has explored relationships between vehicle accidents and geometric design and operation of road sections, but relatively little research has examined factors that contribute to accidents at railway-highway crossings. Between 1998 and 2002 in Korea, about 95% of railway accidents occurred at highway-rail grade crossings, resulting in 402 accidents, of which about 20% resulted in fatalities. These statistics suggest that efforts to reduce crashes at these locations may significantly reduce crash costs. The objective of this paper is to examine factors associated with railroad crossing crashes. Various statistical models are used to examine the relationships between crossing accidents and features of crossings. The paper also compares accident models developed in the United States and the safety effects of crossing elements obtained using Korea data. Crashes were observed to increase with total traffic volume and average daily train volumes. The proximity of crossings to commercial areas and the distance of the train detector from crossings are associated with larger numbers of accidents, as is the time duration between the activation of warning signals and gates. The unique contributions of the paper are the application of the gamma probability model to deal with underdispersion and the insights obtained regarding railroad crossing related vehicle crashes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A study was done to develop macrolevel crash prediction models that can be used to understand and identify effective countermeasures for improving signalized highway intersections and multilane stop-controlled highway intersections in rural areas. Poisson and negative binomial regression models were fit to intersection crash data from Georgia, California, and Michigan. To assess the suitability of the models, several goodness-of-fit measures were computed. The statistical models were then used to shed light on the relationships between crash occurrence and traffic and geometric features of the rural signalized intersections. The results revealed that traffic flow variables significantly affected the overall safety performance of the intersections regardless of intersection type and that the geometric features of intersections varied across intersection type and also influenced crash type.