193 resultados para Power distribution system


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents an approach to developing indicators for expressing resilience of a generic water supply system. The system is contextualised as a meta-system consisting of three subsystems to represent the water catchment and reservoir, treatment plant and the distribution system supplying the end-users. The level of final service delivery to end-users is considered as a surrogate measure of systemic resilience. A set of modelled relationships are used to explore relationships between system components when placed under simulated stress. Conceptual system behaviour of specific types of simulated pressure is created for illustration of parameters for indicator development. The approach is based on the hypothesis that an in-depth knowledge of resilience would enable development of decision support system capability which in turn will contribute towards enhanced management of a water supply system. In contrast to conventional water supply system management approaches, a resilience approach facilitates improvement in system efficiency by emphasising awareness of points-of-intervention where system managers can adjust operational control measures across the meta-system (and within subsystems) rather than expansion of the system in entirety in the form of new infrastructure development.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper addresses challenges part of the shift of paradigm taking place in the way we produce, transmit and use power related to what is known as smart grids. The aim of this paper is to explore present initiatives to establish smart grids as a sustainable and reliable power supply system. We argue that smart grids are not isolated to abstract conceptual models alone. We suggest that establishing sustainable and reliable smart grids depend on series of contributions including modeling and simulation projects, technological infrastructure pilots, systemic methods and training, and not least how these and other elements must interact to add reality to the conceptual models. We present and discuss three initiatives that illuminate smart grids from three very different positions. First, the new power grid simulator project in the electrical engineering PhD program at Queensland University of Technology (QUT). Second, the new smart grids infrastructure pilot run by the Norwegian Centers of Expertise Smart Energy Markets (NCE SMART). And third, the new systemic Master program on next generation energy technology at østfold University College (Hiø). These initiatives represent future threads in a mesh embedding smart grids in models, technology, infrastructure, education, skills and people.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents a distributed communication based active power curtailment (APC) control scheme for grid connected photovoltaic (PV) systems to address voltage rise. A simple distribution feeder model is presented and simulated using MATLAB. The resource sharing based control scheme proposed is shown to be effective at reducing voltage rise during times of peak generation and low load. Simulations also show the even distribution of APC using simple communications. Simulations demonstrate the versatility of the proposed control method under major communication failure conditions. Further research may lead to possible applications in coordinated electric vehicle (EV) charging.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A modular, graphic-oriented Internet browser has been developed to enable non-technical client access to a literal spinning world of information and remotely sensed. The Earth Portal (www.earthportal.net) uses the ManyOne browser (www.manyone.net) to provide engaging point and click views of the Earth fully tessellated with remotely sensed imagery and geospatial data. The ManyOne browser technology use Mozilla with embedded plugins to apply multiple 3-D graphics engines, e.g. ArcGlobe or GeoFusion, that directly link with the open-systems architecture of the geo-spatial infrastructure. This innovation allows for rendering of satellite imagery directly over the Earth's surface and requires no technical training by the web user. Effective use of this global distribution system for the remote sensing community requires a minimal compliance with protocols and standards that have been promoted by NSDI and other open-systems standards organizations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Monitoring gases for environmental, industrial and agricultural fields is a demanding task that requires long periods of observation, large quantity of sensors, data management, high temporal and spatial resolution, long term stability, recalibration procedures, computational resources, and energy availability. Wireless Sensor Networks (WSNs) and Unmanned Aerial Vehicles (UAVs) are currently representing the best alternative to monitor large, remote, and difficult access areas, as these technologies have the possibility of carrying specialised gas sensing systems, and offer the possibility of geo-located and time stamp samples. However, these technologies are not fully functional for scientific and commercial applications as their development and availability is limited by a number of factors: the cost of sensors required to cover large areas, their stability over long periods, their power consumption, and the weight of the system to be used on small UAVs. Energy availability is a serious challenge when WSN are deployed in remote areas with difficult access to the grid, while small UAVs are limited by the energy in their reservoir tank or batteries. Another important challenge is the management of data produced by the sensor nodes, requiring large amount of resources to be stored, analysed and displayed after long periods of operation. In response to these challenges, this research proposes the following solutions aiming to improve the availability and development of these technologies for gas sensing monitoring: first, the integration of WSNs and UAVs for environmental gas sensing in order to monitor large volumes at ground and aerial levels with a minimum of sensor nodes for an effective 3D monitoring; second, the use of solar energy as a main power source to allow continuous monitoring; and lastly, the creation of a data management platform to store, analyse and share the information with operators and external users. The principal outcomes of this research are the creation of a gas sensing system suitable for monitoring any kind of gas, which has been installed and tested on CH4 and CO2 in a sensor network (WSN) and on a UAV. The use of the same gas sensing system in a WSN and a UAV reduces significantly the complexity and cost of the application as it allows: a) the standardisation of the signal acquisition and data processing, thereby reducing the required computational resources; b) the standardisation of calibration and operational procedures, reducing systematic errors and complexity; c) the reduction of the weight and energy consumption, leading to an improved power management and weight balance in the case of UAVs; d) the simplification of the sensor node architecture, which is easily replicated in all the nodes. I evaluated two different sensor modules by laboratory, bench, and field tests: a non-dispersive infrared module (NDIR) and a metal-oxide resistive nano-sensor module (MOX nano-sensor). The tests revealed advantages and disadvantages of the two modules when used for static nodes at the ground level and mobile nodes on-board a UAV. Commercial NDIR modules for CO2 have been successfully tested and evaluated in the WSN and on board of the UAV. Their advantage is the precision and stability, but their application is limited to a few gases. The advantages of the MOX nano-sensors are the small size, low weight, low power consumption and their sensitivity to a broad range of gases. However, selectivity is still a concern that needs to be addressed with further studies. An electronic board to interface sensors in a large range of resistivity was successfully designed, created and adapted to operate on ground nodes and on-board UAV. The WSN and UAV created were powered with solar energy in order to facilitate outdoor deployment, data collection and continuous monitoring over large and remote volumes. The gas sensing, solar power, transmission and data management systems of the WSN and UAV were fully evaluated by laboratory, bench and field testing. The methodology created to design, developed, integrate and test these systems was extensively described and experimentally validated. The sampling and transmission capabilities of the WSN and UAV were successfully tested in an emulated mission involving the detection and measurement of CO2 concentrations in a field coming from a contaminant source; the data collected during the mission was transmitted in real time to a central node for data analysis and 3D mapping of the target gas. The major outcome of this research is the accomplishment of the first flight mission, never reported before in the literature, of a solar powered UAV equipped with a CO2 sensing system in conjunction with a network of ground sensor nodes for an effective 3D monitoring of the target gas. A data management platform was created using an external internet server, which manages, stores, and shares the data collected in two web pages, showing statistics and static graph images for internal and external users as requested. The system was bench tested with real data produced by the sensor nodes and the architecture of the platform was widely described and illustrated in order to provide guidance and support on how to replicate the system. In conclusion, the overall results of the project provide guidance on how to create a gas sensing system integrating WSNs and UAVs, how to power the system with solar energy and manage the data produced by the sensor nodes. This system can be used in a wide range of outdoor applications, especially in agriculture, bushfires, mining studies, zoology, and botanical studies opening the way to an ubiquitous low cost environmental monitoring, which may help to decrease our carbon footprint and to improve the health of the planet.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Maintenance decisions for large-scale asset systems are often beyond an asset manager's capacity to handle. The presence of a number of possibly conflicting decision criteria, the large number of possible maintenance policies, and the reality of budget constraints often produce complex problems, where the underlying trade-offs are not apparent to the asset manager. This paper presents the decision support tool "JOB" (Justification and Optimisation of Budgets), which has been designed to help asset managers of large systems assess, select, interpret and optimise the effects of their maintenance policies in the presence of limited budgets. This decision support capability is realized through an efficient, scalable backtracking- based algorithm for the optimisation of maintenance policies, while enabling the user to view a number of solutions near this optimum and explore tradeoffs with other decision criteria. To assist the asset manager in selecting between various policies, JOB also provides the capability of Multiple Criteria Decision Making. In this paper, the JOB tool is presented and its applicability for the maintenance of a complex power plant system.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

An algorithm based on the concept of Kalman filtering is proposed in this paper for the estimation of power system signal attributes, like amplitude, frequency and phase angle. This technique can be used in protection relays, digital AVRs, DSTATCOMs, FACTS and other power electronics applications. Furthermore this algorithm is particularly suitable for the integration of distributed generation sources to power grids when fast and accurate detection of small variations of signal attributes are needed. Practical considerations such as the effect of noise, higher order harmonics, and computational issues of the algorithm are considered and tested in the paper. Several computer simulations are presented to highlight the usefulness of the proposed approach. Simulation results show that the proposed technique can simultaneously estimate the signal attributes, even if it is highly distorted due to the presence of non-linear loads and noise.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Three different methods of inclusion of current measurements by phasor measurement units (PMUs) in a power sysetm state estimator is investigated. A comprehensive formulation of the hybrid state estimator incorporating conventional, as well as PMU measurements, is presented for each of the three methods. The behaviour of the elements because of the current measurements in the measurement Jacobian matrix is examined for any possible ill-conditioning of the state estimator gain matrix. The performance of the state estimators are compared in terms of the convergence properties and the varian in the estimated states. The IEEE 14-bus and IEEE 300-bus systems are used as test beds for the study.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Load modelling plays an important role in power system dynamic stability assessment. One of the widely used methods in assessing load model impact on system dynamic response is parametric sensitivity analysis. A composite load model-based load sensitivity analysis framework is proposed. It enables comprehensive investigation into load modelling impacts on system stability considering the dynamic interactions between load and system dynamics. The effect of the location of individual as well as patches of composite loads in the vicinity on the sensitivity of the oscillatory modes is investigated. The impact of load composition on the overall sensitivity of the load is also investigated.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

This paper reviews the use of multi-agent systems to model the impacts of high levels of photovoltaic (PV) system penetration in distribution networks and presents some preliminary data obtained from the Perth Solar City high penetration PV trial. The Perth Solar City trial consists of a low voltage distribution feeder supplying 75 customers where 29 consumers have roof top photovoltaic systems. Data is collected from smart meters at each consumer premises, from data loggers at the transformer low voltage (LV) side and from a nearby distribution network SCADA measurement point on the high voltage side (HV) side of the transformer. The data will be used to progressively develop MAS models.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

In this thesis various schemes using custom power devices for power quality improvement in low voltage distribution network are studied. Customer operated distributed generators makes a typical network non-radial and affect the power quality. A scheme considering different algorithm of DSTATCOM is proposed for power circulation and islanded operation of the system. To compensate reactive power overflow and facilitate unity power factor, a UPQC is introduced. Stochastic analysis is carried out for different scenarios to get a comprehensive idea about a real life distribution network. Combined operation of static compensator and voltage regulator is tested for the optimum quality and stability of the system.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

This paper describes part of an engineering study that was undertaken to demonstrate that a multi-megawatt Photovoltaic (PV) generation system could be connected to a rural 11 kV feeder without creating power quality issues for other consumers. The paper concentrates solely on the voltage regulation aspect of the study as this was the most innovative part of the study. The study was carried out using the time-domain software package, PSCAD/EMTDC. The software model included real time data input of actual measured load and scaled PV generation data, along with real-time substation voltage regulator and PV inverter reactive power control. The outputs from the model plot real-time voltage, current and power variations throughout the daily load and PV generation variations. Other aspects of the study not described in the paper include the analysis of harmonics, voltage flicker, power factor, voltage unbalance and system losses.