131 resultados para Physical-chemical variables
Resumo:
Background: Pseudomonas aeruginosa is the most common bacterial pathogen in cystic fibrosis (CF) patients. Current infection control guidelines aim to prevent transmission via contact and respiratory droplet routes and do not consider the possibility of airborne transmission. We hypothesized that with coughing, CF subjects produce viable, respirable bacterial aerosols. Methods: Cross-sectional study of 15 children and 13 adults with CF, 26 chronically infected with P. aeruginosa. A cough aerosol sampling system enabled fractioning of respiratory particles of different size, and culture of viable Gram negative non-fermentative bacteria. We collected cough aerosols during 5 minutes voluntary coughing and during a sputum induction procedure when tolerated. Standardized quantitative culture and genotyping techniques were used. Results: P. aeruginosa was isolated in cough aerosols of 25 (89%) subjects of whom 22 produced sputum samples. P. aeruginosa from sputum and paired cough aerosols were indistinguishable by molecular typing. In 4 cases the same genotype was isolated from ambient room air. Approximately 70% of viable aerosols collected during voluntary coughing were of particles ≤ 3.3 microns aerodynamic diameter. P. aeruginosa, Burkholderia cenocepacia Stenotrophomonas maltophilia and Achromobacter xylosoxidans were cultivated from respiratory particles in this size range. Positive room air samples were associated with high total counts in cough aerosols (P=0.003). The magnitude of cough aerosols were associated with higher FEV1 (r=0.45, P=0.02) and higher quantitative sputum culture results (r=0.58, P=0.008). Conclusion: During coughing, CF patients produce viable aerosols of P. aeruginosa and other Gram negative bacteria of respirable size range, suggesting the potential for airborne transmission.
Resumo:
High time resolution aerosol mass spectrometry measurements were conducted during a field campaign at Mace Head Research Station, Ireland, in June 2007. Observations on one particular day of the campaign clearly indicated advection of aerosol from volcanoes and desert plains in Iceland which could be traced with NOAA Hysplit air mass back trajectories and satellite images. In conjunction with this event, elevated levels of sulphate and light absorbing particles were encountered at Mace Head. While sulphate concentration was continuously increasing, nitrate levels remained low indicating no significant contribution from anthropogenic pollutants. Sulphate concentration increased about 3.8 g/m3 in comparison with the background conditions. Corresponding sulphur flux from volcanic emissions was estimated to about 0.3 TgS/yr, suggesting that a large amount of sulphur released from Icelandic volcanoes may be distributed over distances larger than 1000 km. Overall, our results corroborate that transport of volcanogenic sulphate and dust particles can significantly change the chemical composition, size distribution, and optical properties of aerosol over the North Atlantic Ocean and should be considered accordingly by regional climate models.
Theoretical and numerical investigation of plasmon nanofocusing in metallic tapered rods and grooves
Resumo:
Effective focusing of electromagnetic (EM) energy to nanoscale regions is one of the major challenges in nano-photonics and plasmonics. The strong localization of the optical energy into regions much smaller than allowed by the diffraction limit, also called nanofocusing, offers promising applications in nano-sensor technology, nanofabrication, near-field optics or spectroscopy. One of the most promising solutions to the problem of efficient nanofocusing is related to surface plasmon propagation in metallic structures. Metallic tapered rods, commonly used as probes in near field microscopy and spectroscopy, are of a particular interest. They can provide very strong EM field enhancement at the tip due to surface plasmons (SP’s) propagating towards the tip of the tapered metal rod. A large number of studies have been devoted to the manufacturing process of tapered rods or tapered fibers coated by a metal film. On the other hand, structures such as metallic V-grooves or metal wedges can also provide strong electric field enhancements but manufacturing of these structures is still a challenge. It has been shown, however, that the attainable electric field enhancement at the apex in the V-groove is higher than at the tip of a metal tapered rod when the dissipation level in the metal is strong. Metallic V-grooves also have very promising characteristics as plasmonic waveguides. This thesis will present a thorough theoretical and numerical investigation of nanofocusing during plasmon propagation along a metal tapered rod and into a metallic V-groove. Optimal structural parameters including optimal taper angle, taper length and shape of the taper are determined in order to achieve maximum field enhancement factors at the tip of the nanofocusing structure. An analytical investigation of plasmon nanofocusing by metal tapered rods is carried out by means of the geometric optics approximation (GOA), which is also called adiabatic nanofocusing. However, GOA is applicable only for analysing tapered structures with small taper angles and without considering a terminating tip structure in order to neglect reflections. Rigorous numerical methods are employed for analysing non-adiabatic nanofocusing, by tapered rod and V-grooves with larger taper angles and with a rounded tip. These structures cannot be studied by analytical methods due to the presence of reflected waves from the taper section, the tip and also from (artificial) computational boundaries. A new method is introduced to combine the advantages of GOA and rigorous numerical methods in order to reduce significantly the use of computational resources and yet achieve accurate results for the analysis of large tapered structures, within reasonable calculation time. Detailed comparison between GOA and rigorous numerical methods will be carried out in order to find the critical taper angle of the tapered structures at which GOA is still applicable. It will be demonstrated that optimal taper angles, at which maximum field enhancements occur, coincide with the critical angles, at which GOA is still applicable. It will be shown that the applicability of GOA can be substantially expanded to include structures which could be analysed previously by numerical methods only. The influence of the rounded tip, the taper angle and the role of dissipation onto the plasmon field distribution along the tapered rod and near the tip will be analysed analytically and numerically in detail. It will be demonstrated that electric field enhancement factors of up to ~ 2500 within nanoscale regions are predicted. These are sufficient, for instance, to detect single molecules using surface enhanced Raman spectroscopy (SERS) with the tip of a tapered rod, an approach also known as tip enhanced Raman spectroscopy or TERS. The results obtained in this project will be important for applications for which strong local field enhancement factors are crucial for the performance of devices such as near field microscopes or spectroscopy. The optimal design of nanofocusing structures, at which the delivery of electromagnetic energy to the nanometer region is most efficient, will lead to new applications in near field sensors, near field measuring technology, or generation of nanometer sized energy sources. This includes: applications in tip enhanced Raman spectroscopy (TERS); manipulation of nanoparticles and molecules; efficient coupling of optical energy into and out of plasmonic circuits; second harmonic generation in non-linear optics; or delivery of energy to quantum dots, for instance, for quantum computations.
Resumo:
The aim of this work was to investigate ultrafine particles (< 0.1 μm) in primary school classrooms, in relation to the classrooms activities. The investigations were conducted in three classrooms during two measuring campaigns, which together encompassed a period of 60 days. Initial investigations showed that under the normal operating conditions of the school there were many occasions in all three classrooms where indoor particle concentrations increased significantly compared to outdoor levels. By far the highest increases in the classroom resulted from art activities (painting, gluing and drawing), at times reaching over 1.4 x 105 particle cm-3. The indoor particle concentrations exceeded outdoor concentrations by approximately one order of magnitude, with a count median diameter ranging from 20-50 nm. Significant increases also occurred during cleaning activities, when detergents were used. GC-MS analysis conducted on 4 samples randomly selected from about 30 different paints and glues, as well as the detergent used in the school, showed that d-limonene was one of the main organic compounds of the detergent, however, it was not detected in the samples of the paints and the glue. Controlled experiments showed that this monoterpene, emitted from the detergent, reacted with O3 (at outdoor ambient concentrations ranging from 0.06-0.08ppm) and formed secondary organic aerosols. Further investigations to identify other liquids which may be potential sources of the precursors of secondary organic aerosols, were outside the scope of this project, however, it is expected that the problem identified by this study could be more widely spread, since most primary schools use liquid materials for art classes, and all schools use detergents for cleaning. Further studies are therefore recommended to better understand this phenomenon and also to minimize school children exposure to ultrafine particles from these indoor sources.
Resumo:
Aims: Influenza is commonly spread by infectious aerosols; however, detection of viruses in aerosols is not sensitive enough to confirm the characteristics of virus aerosols. The aim of this study was to develop an assay for respiratory viruses sufficiently sensitive to be used in epidemiological studies. Method: A two-step, nested real-time PCR assay was developed for MS2 bacteriophage, and for influenza A and B, parainfluenza 1 and human respiratory syncytial virus. Outer primer pairs were designed to nest each existing real-time PCR assay. The sensitivities of the nested real-time PCR assays were compared to those of existing real-time PCR assays. Both assays were applied in an aerosol study to compare their detection limits in air samples. Conclusions: The nested real-time PCR assays were found to be several logs more sensitive than the real-time PCR assays, with lower levels of virus detected at lower Ct values. The nested real-time PCR assay successfully detected MS2 in air samples, whereas the real-time assay did not. Significance and Impact of the Study: The sensitive assays for respiratory viruses will permit further research using air samples from naturally generated virus aerosols. This will inform current knowledge regarding the risks associated with the spread of viruses through aerosol transmission.
Resumo:
Raman spectra of pseudojohannite were studied and related to the structure of the mineral. Observed bands were assigned to the stretching and bending vibrations of (UO2)2+ and (SO4)2- units and of water molecules. The published formula of pseudojohannite is Cu6.5(UO2)8\[O8](OH)5\[(SO4)4].25H2O; however Raman spectroscopy does not detect any hydroxyl units. Raman bands at 805 and 810 cm-1 are assigned to (UO2)2+ stretching modes. The Raman bands at 1017 and 1100 cm-1 are assigned to the (SO4)2- symmetric and antisymmetric stretching vibrations. The three Raman bands at 423, 465 and 496 cm-1 are assigned to the (SO4)2- ν2 bending modes. The bands at 210 and 279 cm-1 are assigned to the doubly degenerate ν2 bending vibration of the (UO2)2+ units. U-O bond lengths in uranyl and O-H…O hydrogen bond lengths were calculated from the Raman and infrared spectra.
Resumo:
Raman spectra of metauranospinite Ca[(UO2)(AsO4)]2.8H2O complemented with infrared spectra were studied. Observed bands were assigned to the stretching and bending vibrations of (UO2)2+ and (AsO4)3- units and of water molecules. U-O bond lengths in uranyl and O-H…O hydrogen bond lengths were calculated from the Raman and infrared spectra.
Resumo:
Silylated layered double hydroxides (LDHs) were synthesized through a surfactant-free method involving an in situ condensation of silane with the surface hydroxyl group of LDHs during its reconstruction in carbonate solution. X-ray diffraction (XRD) patterns showed the silylation reaction occurred on the external surfaces of LDHs layers. The successful silylation was evidenced by 29Si cross-polarization magic-angle spinning nuclear magnetic resonance (29Si CP/MAS NMR) spectroscopy, attenuated total reflection Fourier transform infrared (ATR FTIR) spectroscopy, and infrared emission spectroscopy (IES). The ribbon shaped crystallites with a “rodlike” aggregation were observed through transmission electron microscopy (TEM) images. The aggregation was explained by the T2 and T3 types of linkage between adjacent silane molecules as indicated in the 29Si NMR spectrum. In addition, the silylated products show high thermal stability by maintained Si related bands even when the temperature was increased to 1000 °C as observed in IES spectra.
Resumo:
EPR study of both blue and green sapphire samples confirms the presence of Cr(III) in four different octahedral sites. The g (1.98) value is the same but D values differ for the two the samples. The EPR spectra suggest that the blue sapphire contains more chromium than the green sapphire. No Fe(III) impurity was noted in the EPR spectrum.
Resumo:
Raman spectroscopy and FT-IR imaging analyses of cave wall pigment samples from north Queensland (Australia) indicate that some hand stencils were undertaken during a dry environmental phase indicating late Holocene age. Other, earlier painting episodes also took place during dry environmental periods of the terminal Pleistocene and/or early Holocene. These results represent a rare opportunity to attain chronological information for rock art in conditions where insufficient carbon is present for radiocarbon dating.
Resumo:
A combination of micro-Raman spectroscopy, micro-infrared spectroscopy and SEM–EDX was employed to characterize decorative pigments on Classic Maya ceramics from Copán, Honduras. Variation in red paint mixtures was correlated with changing ceramic types and improvements in process and firing techniques. We have confirmed the use of specular hematite on Coner ceramics by the difference in intensities of Raman bands. Different compositions of brown paint were correlated with imported and local wares. The carbon-iron composition of the ceramic type, Surlo Brown, was confirmed. By combining micro-Raman analysis with micro-ATR infrared and SEM–EDX, we have achieved a more comprehensive characterization of the paint mixtures. These spectroscopic techniques can be used non-destructively on raw samples as a rapid confirmation of ceramic type.
Resumo:
A range of novel tetramethyl- and tetraethylisoindolinenitroxides, possessing aryl-linked carboxylic acids, amines, alcohols and phosphonic acids were prepared. Notably, the chemistry established for the aromatic dibromination of the tetramethylisoindolines was not easily transferred to the corresponding tetraethylisoindoline system. Instead, various tetraethylisoindoline analogues were accessed by the oxidation of methyl groups attached to the aromatic ring to give the carboxylic acids. The increased steric bulk of the tetraethyl structures should limit bio-reduction and these compounds may have potential as antioxidants.
Resumo:
A laboratory scale twin screw extruder has been interfaced with a near infrared (NIR) spectrometer via a fibre optic link so that NIR spectra can be collected continuously during the small scale experimental melt state processing of polymeric materials. This system can be used to investigate melt state processes such as reactive extrusion, in real time, in order to explore the kinetics and mechanism of the reaction. A further advantage of the system is that it has the capability to measure apparent viscosity simultaneously which gives important additional information about molecular weight changes and polymer degradation during processing. The system was used to study the melt processing of a nanocomposite consisting of a thermoplastic polyurethane and an organically modified layered silicate.
Resumo:
We developed orthogonal least-squares techniques for fitting crystalline lens shapes, and used the bootstrap method to determine uncertainties associated with the estimated vertex radii of curvature and asphericities of five different models. Three existing models were investigated including one that uses two separate conics for the anterior and posterior surfaces, and two whole lens models based on a modulated hyperbolic cosine function and on a generalized conic function. Two new models were proposed including one that uses two interdependent conics and a polynomial based whole lens model. The models were used to describe the in vitro shape for a data set of twenty human lenses with ages 7–82 years. The two-conic-surface model (7 mm zone diameter) and the interdependent surfaces model had significantly lower merit functions than the other three models for the data set, indicating that most likely they can describe human lens shape over a wide age range better than the other models (although with the two-conic-surfaces model being unable to describe the lens equatorial region). Considerable differences were found between some models regarding estimates of radii of curvature and surface asphericities. The hyperbolic cosine model and the new polynomial based whole lens model had the best precision in determining the radii of curvature and surface asphericities across the five considered models. Most models found significant increase in anterior, but not posterior, radius of curvature with age. Most models found a wide scatter of asphericities, but with the asphericities usually being positive and not significantly related to age. As the interdependent surfaces model had lower merit function than three whole lens models, there is further scope to develop an accurate model of the complete shape of human lenses of all ages. The results highlight the continued difficulty in selecting an appropriate model for the crystalline lens shape.
Resumo:
A non-destructive, diffuse reflectance near infrared spectroscopy (DR-NIRS)approach is considered as a potential tool for determining the component-level structural properties of articular cartilage. To this end, DR-NIRS was applied in vitro to detect structural changes, using principal component analysis as the statistical basis for characterization. The results show that this technique, particularly with first-derivative pretreatment, can distinguish normal, intact cartilage from enzymatically digested cartilage. Further, this paper establishes that the use of DR-NIRS enables the probing of the full depth of the uncalcified cartilage matrix, potentially allowing the assessment of degenerative changes in joint tissue, independent of the site of initiation of the osteoarthritic process.