174 resultados para Motor drive
Resumo:
This study investigated the specificity of the post-concussion syndrome (PCS) expectation-as-etiology hypothesis. Undergraduate students (n = 551) were randomly allocated to one of three vignette conditions. Vignettes depicted either a very mild (VMI), mild (MI), or moderate-to-severe (MSI) motor vehicle-related traumatic brain injury (TBI). Participants reported the PCS and PTSD symptoms that they imagined the depicted injury would produce. Secondary outcomes (knowledge of mild TBI, and the perceived undesirability of TBI) were also assessed. After data screening, the distribution of participants by condition was: VMI (n = 100), MI (n = 96), and MSI (n = 71). There was a significant effect of condition on PCS symptomatology, F(2, 264) = 16.55, p < .001. Significantly greater PCS symptomatology was expected in the MSI condition compared to the other conditions (MSI > VMI; medium effect, r = .33; MSI > MI; small-to-medium effect, r = .22). The same pattern of group differences was found for PTSD symptoms, F(2, 264) = 17.12, p < .001. Knowledge of mild TBI was not related to differences in expected PCS symptoms by condition; and the perceived undesirability of TBI was only associated with reported PCS symptomatology in the MSI condition. Systematic variation in the severity of a depicted TBI produces different PCS and PTSD symptom expectations. Even a very mild TBI vignette can elicit expectations of PCS symptoms.
Resumo:
We find a robust relationship between motor vehicle ownership, its interaction with legal heritage and obesity in OECD countries. Our estimates indicate that an increase of 100 motor vehicles per thousand residents is associated with about a 6% point increase in obesity in common law countries, whereas it has a much smaller or insignificant impact in civil law countries. These relations hold whether we examine trend data and simple correlations, or conduct cross-section or panel data regression analysis. Our results suggest that obesity rises with motor vehicle ownership in countries following a common law tradition where individual liberty is encouraged, whereas the link is small or statistically non-existent in countries with a civil law background where the rights of the individual tend to be circumscribed by the power of the state.
Resumo:
Power system operation and planning are facing increasing uncertainties especially with the deregulation process and increasing demand for power. Probabilistic power system stability assessment and probabilistic power system planning have been identified by EPRI as one of the important trends in power system operations and planning. Probabilistic small signal stability assessment studies the impact of system parameter uncertainties on system small disturbance stability characteristics. Researches in this area have covered many uncertainties factors such as controller parameter uncertainties and generation uncertainties. One of the most important factors in power system stability assessment is load dynamics. In this paper, composite load model is used to consider the uncertainties from load parameter uncertainties impact on system small signal stability characteristics. The results provide useful insight into the significant stability impact brought to the system by load dynamics. They can be used to help system operators in system operation and planning analysis.
Resumo:
A general electrical model of a piezoelectric transducer for ultrasound applications consists of a capacitor in parallel with RLC legs. A high power voltage source converter can however generate significant voltage stress across the transducer that creates high leakage currents. One solution is to reduce the voltage stress across the piezoelectric transducer by using an LC filter, however a main drawback is changing the piezoelectric resonant frequency and its characteristics. Thereby it reduces the efficiency of energy conversion through the transducer. This paper proposes that a high frequency current source converter is a suitable topology to drive high power piezoelectric transducers efficiently.
Resumo:
At present, for mechanical power transmission, Cycloidal drives are most preferred - for compact, high transmission ratio speed reduction, especially for robot joints and manipulator applications. Research on drive-train dynamics of Cycloidal drives is not well-established. This paper presents a testing rig for Cycloidal drives, which would produce data for development of mathematical models and investigation of drive-train dynamics, further aiding in optimising its design
Resumo:
This paper reports on the implementation of a non-invasive electroencephalography-based brain-computer interface to control functions of a car in a driving simulator. The system is comprised of a Cleveland Medical Devices BioRadio 150 physiological signal recorder, a MATLAB-based BCI and an OKTAL SCANeR advanced driving experience simulator. The system utilizes steady-state visual-evoked potentials for the BCI paradigm, elicited by frequency-modulated high-power LEDs and recorded with the electrode placement of Oz-Fz with Fz as ground. A three-class online brain-computer interface was developed and interfaced with an advanced driving simulator to control functions of the car, including acceleration and steering. The findings are mainly exploratory but provide an indication of the feasibility and challenges of brain-controlled on-road cars for the future, in addition to a safe, simulated BCI driving environment to use as a foundation for research into overcoming these challenges.
Resumo:
This paper provides a commentary on the contribution by Dr Chow who questioned whether the functions of learning are general across all categories of tasks or whether there are some task-particular aspects to the functions of learning in relation to task type. Specifically, they queried whether principles and practice for the acquisition of sport skills are different than what they are for musical, industrial, military and human factors skills. In this commentary we argue that ecological dynamics contains general principles of motor learning that can be instantiated in specific performance contexts to underpin learning design. In this proposal, we highlight the importance of conducting skill acquisition research in sport, rather than relying on empirical outcomes of research from a variety of different performance contexts. Here we discuss how task constraints of different performance contexts (sport, industry, military, music) provide different specific information sources that individuals use to couple their actions when performing and acquiring skills. We conclude by suggesting that his relationship between performance task constraints and learning processes might help explain the traditional emphasis on performance curves and performance outcomes to infer motor learning.
Resumo:
Objectives: To investigate the frequency characteristics of the ground reaction force (GRF) recorded throughout the eccentric Achilles tendon rehabilitation programme described by Alfredson. Design: Controlled laboratory study, longitudinal. Methods: Nine healthy adult males performed six sets (15 repetitions per set) of eccentric ankle exercise. Ground reaction force was recorded throughout the exercise protocol. For each exercise repetition the frequency power spectrum of the resultant ground reaction force was calculated and normalised to total power. The magnitude of peak relative power within the 8-12 Hz bandwidth and the frequency at which this peak occurred was determined. Results: The magnitude of peak relative power within the 8-12 Hz bandwidth increased with each successive exercise set and following the 4th set (60 repetitions) of exercise the frequency at which peak relative power occurred shifted from 9 to 10 Hz. Conclusions: The increase in magnitude and frequency of ground reaction force vibrations with an increasing number of exercise repetitions is likely connected to changes in muscle activation with fatigue and tendon conditioning. This research illustrates the potential for the number of exercise repetitions performed to influence the tendons' mechanical environment, with implications for tendon remodelling and the clinical efficacy of eccentric rehabilitation programmes for Achilles tendinopathy.
Resumo:
The ability of a piezoelectric transducer in energy conversion is rapidly expanding in several applications. Some of the industrial applications for which a high power ultrasound transducer can be used are surface cleaning, water treatment, plastic welding and food sterilization. Also, a high power ultrasound transducer plays a great role in biomedical applications such as diagnostic and therapeutic applications. An ultrasound transducer is usually applied to convert electrical energy to mechanical energy and vice versa. In some high power ultrasound system, ultrasound transducers are applied as a transmitter, as a receiver or both. As a transmitter, it converts electrical energy to mechanical energy while a receiver converts mechanical energy to electrical energy as a sensor for control system. Once a piezoelectric transducer is excited by electrical signal, piezoelectric material starts to vibrate and generates ultrasound waves. A portion of the ultrasound waves which passes through the medium will be sensed by the receiver and converted to electrical energy. To drive an ultrasound transducer, an excitation signal should be properly designed otherwise undesired signal (low quality) can deteriorate the performance of the transducer (energy conversion) and increase power consumption in the system. For instance, some portion of generated power may be delivered in unwanted frequency which is not acceptable for some applications especially for biomedical applications. To achieve better performance of the transducer, along with the quality of the excitation signal, the characteristics of the high power ultrasound transducer should be taken into consideration as well. In this regard, several simulation and experimental tests are carried out in this research to model high power ultrasound transducers and systems. During these experiments, high power ultrasound transducers are excited by several excitation signals with different amplitudes and frequencies, using a network analyser, a signal generator, a high power amplifier and a multilevel converter. Also, to analyse the behaviour of the ultrasound system, the voltage ratio of the system is measured in different tests. The voltage across transmitter is measured as an input voltage then divided by the output voltage which is measured across receiver. The results of the transducer characteristics and the ultrasound system behaviour are discussed in chapter 4 and 5 of this thesis. Each piezoelectric transducer has several resonance frequencies in which its impedance has lower magnitude as compared to non-resonance frequencies. Among these resonance frequencies, just at one of those frequencies, the magnitude of the impedance is minimum. This resonance frequency is known as the main resonance frequency of the transducer. To attain higher efficiency and deliver more power to the ultrasound system, the transducer is usually excited at the main resonance frequency. Therefore, it is important to find out this frequency and other resonance frequencies. Hereof, a frequency detection method is proposed in this research which is discussed in chapter 2. An extended electrical model of the ultrasound transducer with multiple resonance frequencies consists of several RLC legs in parallel with a capacitor. Each RLC leg represents one of the resonance frequencies of the ultrasound transducer. At resonance frequency the inductor reactance and capacitor reactance cancel out each other and the resistor of this leg represents power conversion of the system at that frequency. This concept is shown in simulation and test results presented in chapter 4. To excite a high power ultrasound transducer, a high power signal is required. Multilevel converters are usually applied to generate a high power signal but the drawback of this signal is low quality in comparison with a sinusoidal signal. In some applications like ultrasound, it is extensively important to generate a high quality signal. Several control and modulation techniques are introduced in different papers to control the output voltage of the multilevel converters. One of those techniques is harmonic elimination technique. In this technique, switching angles are chosen in such way to reduce harmonic contents in the output side. It is undeniable that increasing the number of the switching angles results in more harmonic reduction. But to have more switching angles, more output voltage levels are required which increase the number of components and cost of the converter. To improve the quality of the output voltage signal with no more components, a new harmonic elimination technique is proposed in this research. Based on this new technique, more variables (DC voltage levels and switching angles) are chosen to eliminate more low order harmonics compared to conventional harmonic elimination techniques. In conventional harmonic elimination method, DC voltage levels are same and only switching angles are calculated to eliminate harmonics. Therefore, the number of eliminated harmonic is limited by the number of switching cycles. In the proposed modulation technique, the switching angles and the DC voltage levels are calculated off-line to eliminate more harmonics. Therefore, the DC voltage levels are not equal and should be regulated. To achieve this aim, a DC/DC converter is applied to adjust the DC link voltages with several capacitors. The effect of the new harmonic elimination technique on the output quality of several single phase multilevel converters is explained in chapter 3 and 6 of this thesis. According to the electrical model of high power ultrasound transducer, this device can be modelled as parallel combinations of RLC legs with a main capacitor. The impedance diagram of the transducer in frequency domain shows it has capacitive characteristics in almost all frequencies. Therefore, using a voltage source converter to drive a high power ultrasound transducer can create significant leakage current through the transducer. It happens due to significant voltage stress (dv/dt) across the transducer. To remedy this problem, LC filters are applied in some applications. For some applications such as ultrasound, using a LC filter can deteriorate the performance of the transducer by changing its characteristics and displacing the resonance frequency of the transducer. For such a case a current source converter could be a suitable choice to overcome this problem. In this regard, a current source converter is implemented and applied to excite the high power ultrasound transducer. To control the output current and voltage, a hysteresis control and unipolar modulation are used respectively. The results of this test are explained in chapter 7.
Resumo:
In Angus v Conelius [2007] QCA 190 the Queensland Court of Appeal concluded that the obligations under the Motor Accident Insurance Act 1994 (Qld), and in particular s 45 of the Act (duty of claimant to cooperate with insurer), continue beyond the commencement of court proceedings
Resumo:
This paper quantifies the mixing and dispersion from an outboard motor by field experiments in a small subtropical waterway. Organic dye was used as a surrogate for exhaust emissions and was mixed with uncontaminated creek water before being dispersed into the creek. Dye concentrations were measured with an array of concentration probes stationed in the creek. The data were then processed and fitted with a power law function. The corresponding dispersion constants agreed well with the literature. However, the amplitude was lower than the IMO equation but higher than the correlation from laboratory tests. Results for dye concentration intermittency (presence of dye) are presented for the first time from such field measurements and show significant mixing in-homogeneity.
Resumo:
Driving can be dangerous, especially for young and inexperienced drivers. To help address the issue of inexperience a gamified logbook application was developed for Learner drivers. The application aims to encourage learners to undertake a wider range of practice, while also making it easier to record their mandatory practice sessions. This paper reports on the design of this application, focusing on the effect that adding gamification can have on the usability and user experience of the application and the importance of playability testing for gamified systems. Two versions of the application were developed, one with game elements and one without game elements. This paper presents findings from a study that compares the user experience of these two versions of the application with twelve recent Learner drivers. Overall, participants reported that the gamified version was more engaging and motivating than the non-gamified version, however neither versions were preferred over the other. We theorise that this may have occurred due to a number of usability issues that arose, including an increased difficulty in learnability due to the added game elements. These design issues are important to address in future gamified system designs.
Resumo:
Drink driving contributes towards high injury rates for Indigenous populations in Canada and Australia, particularly in more isolated regions. At present there is limited research on the cultural and psychosocial factors that underpin Indigenous peoples’ drink driving. This study is part of a broader project aiming to inform a culturally sensitive program. Qualitative interviews with 29 convicted Indigenous drink drivers (aged 20-51 years) from a remote region of Queensland, Australia were used to explore their cognitions about, and underlying motivation for, drink driving as well as the factors that might facilitate or impede it. Although a number of themes were identified, this paper will focus on the first theme, respondents’ self-perceived rationale for their behaviour. Two subthemes were identified: ‘being the hero’ referred to situations where respondents were motivated by a bravado mentality to drive after drinking despite having, on some occasions, the opportunity to avoid this (e.g. another person offering to drive); and ‘family obligations’ which referred to situations where respondents described pressure from members of their extended families to drive after drinking. The underlying responsibility for transporting family members appeared to be difficult to avoid and related to cultural values. Findings indicate the social and individual characteristics for younger drink drivers are similar to mainstream populations. However, the reinforcers for Indigenous drink drivers may be different for this population, consistent with findings on other Indigenous populations outside Australia. Specific programs should contain a family-centred approach and explore the kinship value system to build strategies around these strong relationships.
Resumo:
Young men figure prominently in sleep-related road crashes. Non-driving studies show them to be particularly vulnerable to sleep loss, compared with older men. We assessed the effect of a normal night's sleep vs. prior sleep restricted to 5 h, in a counterbalanced design, on prolonged (2 h) afternoon simulated driving in 20 younger (av. 23 y) and 19 older (av. 67 y) healthy men. Driving was monitored for sleepiness related lane deviations, EEGs were recorded continuously and subjective ratings of sleepiness taken every 200 s. Following normal sleep there were no differences between groups for any measure. After sleep restriction younger drivers showed significantly more sleepiness-related deviations and greater 4–11 Hz EEG power, indicative of sleepiness. There was a near significant increase in subjective sleepiness. Correlations between the EEG and subjective measures were highly significant for both groups, indicating good self-insight into increasing sleepiness. We confirm the greater vulnerability of younger drivers to sleep loss under prolonged afternoon driving.