624 resultados para Magnification Factors, Metodo Alpha, torsione
Resumo:
Police work tasks are diverse and require the ability to take command, demonstrate leadership, make serious decisions and be self directed (Beck, 1999; Brunetto & Farr-Wharton, 2002; Howard, Donofrio & Boles, 2002). This work is usually performed in pairs or sometimes by an officer working alone. Operational police work is seldom performed under the watchful eyes of a supervisor and a great amount of reliance is placed on the high levels of motivation and professionalism of individual officers. Research has shown that highly motivated workers produce better outcomes (Whisenand & Rush, 1998; Herzberg, 2003). It is therefore important that Queensland police officers are highly motivated to provide a quality service to the Queensland community. This research aims to identify factors which motivate Queensland police to perform quality work. Researchers acknowledge that there is a lack of research and knowledge in regard to the factors which motivate police (Beck, 1999; Bragg, 1998; Howard, Donofrio & Boles, 2002; McHugh & Verner, 1998). The motivational factors were identified in regard to the demographic variables of; age, sex, rank, tenure and education. The model for this research is Herzberg’s two-factor theory of workplace motivation (1959). Herzberg found that there are two broad types of workplace motivational factors; those driven by a need to prevent loss or harm and those driven by a need to gain personal satisfaction or achievement. His study identified 16 basic sub-factors that operate in the workplace. The research utilised a questionnaire instrument based on the sub-factors identified by Herzberg (1959). The questionnaire format consists of an initial section which sought demographic information about the participant and is followed by 51 Likert scale questions. The instrument is an expanded version of an instrument previously used in doctoral studies to identify sources of police motivation (Holden, 1980; Chiou, 2004). The questionnaire was forwarded to approximately 960 police in the Brisbane, Metropolitan North Region. The data were analysed using Factor Analysis, MANOVAs, ANOVAs and multiple regression analysis to identify the key sources of police motivation and to determine the relationships between demographic variables such as: age, rank, educational level, tenure, generation cohort and motivational factors. A total of 484 officers responded to the questionnaire from the sample population of 960. Factor analysis revealed five broad Prime Motivational Factors that motivate police in their work. The Prime Motivational Factors are: Feeling Valued, Achievement, Workplace Relationships, the Work Itself and Pay and Conditions. The factor Feeling Valued highlighted the importance of positive supportive leaders in motivating officers. Many officers commented that supervisors who only provided negative feedback diminished their sense of feeling valued and were a key source of de-motivation. Officers also frequently commented that they were motivated by operational police work itself whilst demonstrating a strong sense of identity with their team and colleagues. The study showed a general need for acceptance by peers and an idealistic motivation to assist members of the community in need and protect victims of crime. Generational cohorts were not found to exert a significant influence on police motivation. The demographic variable with the single greatest influence on police motivation was tenure. Motivation levels were found to drop dramatically during the first two years of an officer’s service and generally not improve significantly until near retirement age. The findings of this research provide the foundation of a number of recommendations in regard to police retirement, training and work allocation that are aimed to improve police motivation levels. The five Prime Motivational Factor model developed in this study is recommended for use as a planning tool by police leaders to improve motivational and job-satisfaction components of police Service policies. The findings of this study also provide a better understanding of the current sources of police motivation. They are expected to have valuable application for Queensland police human resource management when considering policies and procedures in the areas of motivation, stress reduction and attracting suitable staff to specific areas of responsibility.
Resumo:
Advances in symptom management strategies through a better understanding of cancer symptom clusters depend on the identification of symptom clusters that are valid and reliable. The purpose of this exploratory research was to investigate alternative analytical approaches to identify symptom clusters for patients with cancer, using readily accessible statistical methods, and to justify which methods of identification may be appropriate for this context. Three studies were undertaken: (1) a systematic review of the literature, to identify analytical methods commonly used for symptom cluster identification for cancer patients; (2) a secondary data analysis to identify symptom clusters and compare alternative methods, as a guide to best practice approaches in cross-sectional studies; and (3) a secondary data analysis to investigate the stability of symptom clusters over time. The systematic literature review identified, in 10 years prior to March 2007, 13 cross-sectional studies implementing multivariate methods to identify cancer related symptom clusters. The methods commonly used to group symptoms were exploratory factor analysis, hierarchical cluster analysis and principal components analysis. Common factor analysis methods were recommended as the best practice cross-sectional methods for cancer symptom cluster identification. A comparison of alternative common factor analysis methods was conducted, in a secondary analysis of a sample of 219 ambulatory cancer patients with mixed diagnoses, assessed within one month of commencing chemotherapy treatment. Principal axis factoring, unweighted least squares and image factor analysis identified five consistent symptom clusters, based on patient self-reported distress ratings of 42 physical symptoms. Extraction of an additional cluster was necessary when using alpha factor analysis to determine clinically relevant symptom clusters. The recommended approaches for symptom cluster identification using nonmultivariate normal data were: principal axis factoring or unweighted least squares for factor extraction, followed by oblique rotation; and use of the scree plot and Minimum Average Partial procedure to determine the number of factors. In contrast to other studies which typically interpret pattern coefficients alone, in these studies symptom clusters were determined on the basis of structure coefficients. This approach was adopted for the stability of the results as structure coefficients are correlations between factors and symptoms unaffected by the correlations between factors. Symptoms could be associated with multiple clusters as a foundation for investigating potential interventions. The stability of these five symptom clusters was investigated in separate common factor analyses, 6 and 12 months after chemotherapy commenced. Five qualitatively consistent symptom clusters were identified over time (Musculoskeletal-discomforts/lethargy, Oral-discomforts, Gastrointestinaldiscomforts, Vasomotor-symptoms, Gastrointestinal-toxicities), but at 12 months two additional clusters were determined (Lethargy and Gastrointestinal/digestive symptoms). Future studies should include physical, psychological, and cognitive symptoms. Further investigation of the identified symptom clusters is required for validation, to examine causality, and potentially to suggest interventions for symptom management. Future studies should use longitudinal analyses to investigate change in symptom clusters, the influence of patient related factors, and the impact on outcomes (e.g., daily functioning) over time.
Resumo:
The performance of an adaptive filter may be studied through the behaviour of the optimal and adaptive coefficients in a given environment. This thesis investigates the performance of finite impulse response adaptive lattice filters for two classes of input signals: (a) frequency modulated signals with polynomial phases of order p in complex Gaussian white noise (as nonstationary signals), and (b) the impulsive autoregressive processes with alpha-stable distributions (as non-Gaussian signals). Initially, an overview is given for linear prediction and adaptive filtering. The convergence and tracking properties of the stochastic gradient algorithms are discussed for stationary and nonstationary input signals. It is explained that the stochastic gradient lattice algorithm has many advantages over the least-mean square algorithm. Some of these advantages are having a modular structure, easy-guaranteed stability, less sensitivity to the eigenvalue spread of the input autocorrelation matrix, and easy quantization of filter coefficients (normally called reflection coefficients). We then characterize the performance of the stochastic gradient lattice algorithm for the frequency modulated signals through the optimal and adaptive lattice reflection coefficients. This is a difficult task due to the nonlinear dependence of the adaptive reflection coefficients on the preceding stages and the input signal. To ease the derivations, we assume that reflection coefficients of each stage are independent of the inputs to that stage. Then the optimal lattice filter is derived for the frequency modulated signals. This is performed by computing the optimal values of residual errors, reflection coefficients, and recovery errors. Next, we show the tracking behaviour of adaptive reflection coefficients for frequency modulated signals. This is carried out by computing the tracking model of these coefficients for the stochastic gradient lattice algorithm in average. The second-order convergence of the adaptive coefficients is investigated by modeling the theoretical asymptotic variance of the gradient noise at each stage. The accuracy of the analytical results is verified by computer simulations. Using the previous analytical results, we show a new property, the polynomial order reducing property of adaptive lattice filters. This property may be used to reduce the order of the polynomial phase of input frequency modulated signals. Considering two examples, we show how this property may be used in processing frequency modulated signals. In the first example, a detection procedure in carried out on a frequency modulated signal with a second-order polynomial phase in complex Gaussian white noise. We showed that using this technique a better probability of detection is obtained for the reduced-order phase signals compared to that of the traditional energy detector. Also, it is empirically shown that the distribution of the gradient noise in the first adaptive reflection coefficients approximates the Gaussian law. In the second example, the instantaneous frequency of the same observed signal is estimated. We show that by using this technique a lower mean square error is achieved for the estimated frequencies at high signal-to-noise ratios in comparison to that of the adaptive line enhancer. The performance of adaptive lattice filters is then investigated for the second type of input signals, i.e., impulsive autoregressive processes with alpha-stable distributions . The concept of alpha-stable distributions is first introduced. We discuss that the stochastic gradient algorithm which performs desirable results for finite variance input signals (like frequency modulated signals in noise) does not perform a fast convergence for infinite variance stable processes (due to using the minimum mean-square error criterion). To deal with such problems, the concept of minimum dispersion criterion, fractional lower order moments, and recently-developed algorithms for stable processes are introduced. We then study the possibility of using the lattice structure for impulsive stable processes. Accordingly, two new algorithms including the least-mean P-norm lattice algorithm and its normalized version are proposed for lattice filters based on the fractional lower order moments. Simulation results show that using the proposed algorithms, faster convergence speeds are achieved for parameters estimation of autoregressive stable processes with low to moderate degrees of impulsiveness in comparison to many other algorithms. Also, we discuss the effect of impulsiveness of stable processes on generating some misalignment between the estimated parameters and the true values. Due to the infinite variance of stable processes, the performance of the proposed algorithms is only investigated using extensive computer simulations.
Mental computation : the identification of associated cognitive, metacognitive and affective factors