106 resultados para German manufacturing
Investigating ISO90001:2000 certification, and its connection with TQM in the manufacturing industry
Resumo:
Tertiary institutions now face serious challenges. Modern industry requires engineering graduates with strong knowledge of modern technologies, highly practical focus, management skills, ability to work individually and in a team, understanding of environmental issues and many other skills and graduate attributes. Institutions in the tertiary sector change courses and modify curriculum to reflect challenges of the modern industry and make engineering graduates better prepared for the “real world”. Queensland University of Technology in the recent years introduced an innovative structure of engineering courses with a common core for Bachelor of Engineering Mechanical, Infomechatronics and Medical, where manufacturing is taught in conjunction with engineering design and engineering materials. In this paper we discuss the innovative curriculum structure, teaching and learning approaches of coherent delivery of manufacturing in conjunction with engineering design and
Resumo:
India’s desire to transform itself into an international military power has brought about a rapid shift in its approach to procuring military hardware. The indigenization of India’s military manufacturing capacity forms an integral part of the strategic objectives of Indian military services, with its realization being a function of significant government investment in strategic technologies. This has a number of ramifications. An indigenous Indian military capacity, particularly in the field of aviation, forms a key part of India’s ambition of achieving regional air superiority, or even supremacy, and being capable of power projection. This is particularly in response to China’s increasing presence in South Asian airspace. A burgeoning Indian military manufacturing machine based on a comparative advantage in skilled technicians and lower-cost labour, together with strategic collaboration with foreign military hardware manufacturers, may also lead to neighbouring countries looking to India as a source of competitively priced military hardware. In short, this chapter seeks to analyse the rationale behind India’s attempt to become militarily self-sufficient in the field of aviation, discuss the technical, economic and political context in which it is achieving this transformation, and assess the potential outlook of success for India’s drive to achieve self-sufficiency in the arena of military aviation. This chapter will do so by using the case of India’s attempt to develop a fifth-generation fighter aircraft.
Resumo:
The primary aim of this multidisciplinary project was to develop a new generation of breast implants. Disrupting the currently prevailing paradigm of silicone implants which permanently introduce a foreign body into mastectomy patients, highly porous implants developed as part of this PhD project are biodegradable by the body and augment the growth of natural tissue. Our technology platform leverages computer-assisted-design which allows us to manufacture fully patient-specific implants based on a personalised medicine approach. Multiple animal studies conducted in this project have shown that the polymeric implant slowly degrades within the body harmlessly while the body's own tissue forms concurrently.
Resumo:
More creatives work outside the creative industries than inside them. Recent Australian Census data show that 52 per cent of creatives work outside of the core creative industries. These embedded creatives make up 2 per cent of manufacturing industry employees. There is little qualitative research into embedded creatives. This paper aims to address this by exploring the contribution of creative skills to manufacturing in Australia. Through four case studies of designers and marketing staff in lighting and car seat manufacturing companies, this paper demonstrates some of the work that embedded creatives undertake in the manufacturing industry and some of the ways that they contribute to innovation. The paper also considers perspectives embedded creatives bring to manufacturing and challenges involved in being a creative worker in a non-creative industry. This research is important to economic development issues, demonstrating some of the roles of key innovators in an important industry. This work also informs the education of creative industries students who will go on to contribute in a variety of industries. Furthermore, this research exemplifies one industry where employment is available to creatives outside of the creative industries.
Resumo:
We commend Swanenburg et al. (2013) on translation, development, and clinimetric analysis of the NDI-G. However, the dual-factor structure with factor analysis and the high level of internal consistency (IC) highlighted in their discussion were not emphasized in the abstract or conclusion. These points may imply some inconsistencies with the final conclusions since determination of stable point estimates with the study's small sample are exceedingly difficult.
Resumo:
Microwell platforms are frequently described for the efficient and uniform manufacture of 3-dimensional (3D) multicellular microtissues. Multiple partial or complete medium exchanges can displace microtissues from discrete microwells, and this can result in either the loss of microtissues from culture, or microtissue amalgamation when displaced microtissues fall into common microwells. Herein we describe the first microwell platform that incorporates a mesh to retain microtissues within discrete microwells; the microwell-mesh. We show that bonding a nylon mesh with an appropriate pore size over the microwell openings allows single cells to pass through the mesh into the microwells during the seeding process, but subsequently retains assembled microtissues within discrete microwells. To demonstrate the utility of this platform, we used the microwell-mesh to manufacture hundreds of cartilage microtissues, each formed from 5 × 10(3) bone marrow-derived mesenchymal stem/stromal cells (MSC). The microwell-mesh enabled reliable microtissue retention over 21-day cultures that included multiple full medium exchanges. Cartilage-like matrix formation was more rapid and homogeneous in microtissues than in conventional large diameter control cartilage pellets formed from 2 × 10(5) MSC each. The microwell-mesh platform offers an elegant mechanism to retain microtissues in microwells, and we believe that this improvement will make this platform useful in 3D culture protocols that require multiple medium exchanges, such as those that mimic specific developmental processes or complex sequential drug exposures.
Resumo:
This study reports on an original concept of additive manufacturing for the fabrication of tissue engineered constructs (TEC), offering the possibility of concomitantly manufacturing a customized scaffold and a bioreactor chamber to any size and shape. As a proof of concept towards the development of anatomically relevant TECs, this concept was utilized for the design and fabrication of a highly porous sheep tibia scaffold around which a bioreactor chamber of similar shape was simultaneously built. The morphology of the bioreactor/scaffold device was investigated by micro-computed tomography and scanning electron microscopy confirming the porous architecture of the sheep tibiae as opposed to the non-porous nature of the bioreactor chamber. Additionally, this study demonstrates that both the shape, as well as the inner architecture of the device can significantly impact the perfusion of fluid within the scaffold architecture. Indeed, fluid flow modelling revealed that this was of significant importance for controlling the nutrition flow pattern within the scaffold and the bioreactor chamber, avoiding the formation of stagnant flow regions detrimental for in vitro tissue development. The bioreactor/scaffold device was dynamically seeded with human primary osteoblasts and cultured under bi-directional perfusion for two and six weeks. Primary human osteoblasts were observed homogenously distributed throughout the scaffold, and were viable for the six week culture period. This work demonstrates a novel application for additive manufacturing in the development of scaffolds and bioreactors. Given the intrinsic flexibility of the additive manufacturing technology platform developed, more complex culture systems can be fabricated which would contribute to the advances in customized and patient-specific tissue engineering strategies for a wide range of applications.
Resumo:
Additive manufacturing forms a potential route towards economically viable production of cellular constructs for tissue engineering. Hydrogels are a suitable class of materials for cell delivery and 3D culture, but are generally unsuitable as construction materials. Gelatine-methacrylamide is an example of such a hydrogel system widely used in the field of tissue engineering, e.g. for cartilage and cardiovascular applications. Here we show that by the addition of gellan gum to gelatine-methacrylamide and tailoring salt concentrations, rheological properties such as pseudo-plasticity and yield stress can be optimised towards gel dispensing for additive manufacturing processes. In the hydrogel formulation, salt is partly substituted by mannose to obtain isotonicity and prevent a reduction in cell viability. With this, the potential of this new bioink for additive tissue manufacturing purposes is demonstrated.
Resumo:
Background/Aim. Mesenchymal stromal cells (MSCs) have been utilised in many clinical trials as an experimental treatment in numerous clinical settings. Bone marrow remains the traditional source tissue for MSCs but is relatively hard to access in large volumes. Alternatively, MSCs may be derived from other tissues including the placenta and adipose tissue. In an initial study no obvious differences in parameters such as cell surface phenotype, chemokine receptor display, mesodermal differentiation capacity or immunosuppressive ability, were detected when we compared human marrow derived- MSCs to human placenta-derived MSCs. The aim of this study was to establish and evaluate a protocol and related processes for preparation placenta-derived MSCs for early phase clinical trials. Methods. A full-term placenta was taken after delivery of the baby as a source of MSCs. Isolation, seeding, incubation, cryopreservation of human placentaderived MSCs and used production release criteria were in accordance with the complex regulatory requirements applicable to Code of Good Manufacturing Practice manufacturing of ex vivo expanded cells. Results. We established and evaluated instructions for MSCs preparation protocol and gave an overview of the three clinical areas application. In the first trial, MSCs were co-transplanted iv to patient receiving an allogeneic cord blood transplant as therapy for treatmentrefractory acute myeloid leukemia. In the second trial, MSCs were administered iv in the treatment of idiopathic pulmonary fibrosis and without serious adverse effects. In the third trial, MSCs were injected directly into the site of tendon damage using ultrasound guidance in the treatment of chronic refractory tendinopathy. Conclusion. Clinical trials using both allogeneic and autologous cells demonstrated MSCs to be safe. A described protocol for human placenta-derived MSCs is appropriate for use in a clinical setting, relatively inexpensive and can be relatively easily adjusted to a different set of regulatory requirements, as applicable to early phase clinical trials.
Resumo:
During the past few decades, developing efficient methods to solve dynamic facility layout problems has been focused on significantly by practitioners and researchers. More specifically meta-heuristic algorithms, especially genetic algorithm, have been proven to be increasingly helpful to generate sub-optimal solutions for large-scale dynamic facility layout problems. Nevertheless, the uncertainty of the manufacturing factors in addition to the scale of the layout problem calls for a mixed genetic algorithm–robust approach that could provide a single unlimited layout design. The present research aims to devise a customized permutation-based robust genetic algorithm in dynamic manufacturing environments that is expected to be generating a unique robust layout for all the manufacturing periods. The numerical outcomes of the proposed robust genetic algorithm indicate significant cost improvements compared to the conventional genetic algorithm methods and a selective number of other heuristic and meta-heuristic techniques.
Resumo:
La presenta investigación centra su atención en evaluar el impacto de las Condiciones de Trabajo en la Calidad de Vida Laboral del talento humano de sector manufacturero de la región Caribe colombiana. Para analizar este proceso se entrevistaron a 518 empleados del sector. El diseño utilizado fue no experimental de tipo transversal descriptivo, puesto que a cada participante se le aplicó una entrevista con el instrumento de Condiciones de Trabajo y la Herramienta de Calidad de Vida Laboral (Condiciones Salariales y Subjetivas). Los datos fueron analizados mediante análisis de correlación y modelos de regresión logística. Los resultados mostraron que el ambiente térmico y las normas de seguridad en el trabajo afectan de forma positiva la Calidad de Vida Laboral de los empleados del sector. Estos resultados ponen de manifiesto que la relación entre las condiciones de trabajo y la CVL se basa en la competencia y distan de ser una relación lineal y simple relacionada con la consideración de la presencia o la ausencia de las condiciones de trabajo. Ello tiene implicaciones a la hora de formular políticas, programas e intervenciones para prevenir, erradicar y amortiguar los efectos negativos de las condiciones de trabajo y mejorar la seguridad industrial dentro de las empresas.
Resumo:
To mitigate the effects of climate change, countries worldwide are advancing technologies to reduce greenhouse gas emissions. This paper proposes and measures optimal production resource reallocation using data envelopment analysis. This research attempts to clarify the effect of optimal production resource reallocation on CO2 emissions reduction, focusing on regional and industrial characteristics. We use finance, energy, and CO2 emissions data from 13 industrial sectors in 39 countries from 1995 to 2009. The resulting emissions reduction potential is 2.54 Gt-CO2 in the year 2009, with former communist countries having the largest potential to reduce CO2 emissions in the manufacturing sectors. In particular, basic material industry including chemical and steel sectors has a lot of potential to reduce CO2 emissions.