160 resultados para Bus Only Highway
Resumo:
Bus travel time estimation and prediction are two important modelling approaches which could facilitate transit users in using and transit providers in managing the public transport network. Bus travel time estimation could assist transit operators in understanding and improving the reliability of their systems and attracting more public transport users. On the other hand, bus travel time prediction is an important component of a traveller information system which could reduce the anxiety and stress for the travellers. This paper provides an insight into the characteristic of bus in traffic and the factors that influence bus travel time. A critical overview of the state-of-the-art in bus travel time estimation and prediction is provided and the needs for research in this important area are highlighted. The possibility of using Vehicle Identification Data (VID) for studying the relationship between bus and cars travel time is also explored.
Resumo:
Travel time in an important transport performance indicator. Different modes of transport (buses and cars) have different mechanical and operational characteristics, resulting in significantly different travel behaviours and complexities in multimodal travel time estimation on urban networks. This paper explores the relationship between bus and car travel time on urban networks by utilising the empirical Bluetooth and Bus Vehicle Identification data from Brisbane. The technologies and issues behind the two datasets are studied. After cleaning the data to remove outliers, the relationship between not-in-service bus and car travel time and the relationship between in-service bus and car travel time are discussed. The travel time estimation models reveal that the not-in-service bus travel time are similar to the car travel time and the in-service bus travel time could be used to estimate car travel time during off-peak hours
Resumo:
In Virgtel Ltd v Zabusky [2009] QCA 92 the Queensland Court of Appeal considered the scope of an order “as to costs only” within the meaning of s 253 of the Supreme Court Act 1995 (Qld) (‘the Act”). The Court also declined to accept submissions from one of the parties after oral hearing, and made some useful comments which serve as a reminder to practitioners of their obligations in that regard.
Resumo:
The use of Wireless Sensor Networks (WSNs) for Structural Health Monitoring (SHM) has become a promising approach due to many advantages such as low cost, fast and flexible deployment. However, inherent technical issues such as data synchronization error and data loss have prevented these distinct systems from being extensively used. Recently, several SHM-oriented WSNs have been proposed and believed to be able to overcome a large number of technical uncertainties. Nevertheless, there is limited research verifying the applicability of those WSNs with respect to demanding SHM applications like modal analysis and damage identification. This paper first presents a brief review of the most inherent uncertainties of the SHM-oriented WSN platforms and then investigates their effects on outcomes and performance of the most robust Output-only Modal Analysis (OMA) techniques when employing merged data from multiple tests. The two OMA families selected for this investigation are Frequency Domain Decomposition (FDD) and Data-driven Stochastic Subspace Identification (SSI-data) due to the fact that they both have been widely applied in the past decade. Experimental accelerations collected by a wired sensory system on a large-scale laboratory bridge model are initially used as clean data before being contaminated by different data pollutants in sequential manner to simulate practical SHM-oriented WSN uncertainties. The results of this study show the robustness of FDD and the precautions needed for SSI-data family when dealing with SHM-WSN uncertainties. Finally, the use of the measurement channel projection for the time-domain OMA techniques and the preferred combination of the OMA techniques to cope with the SHM-WSN uncertainties is recommended.
Resumo:
The 2011 floods in Southeast Queensland had a devastating impact on many sectors including transport. Road and rail systems across all flooded areas of Queensland were severely affected and significant economic losses occurred as a result of roadway and railway closures. Travellers were compelled to take alternative routes because of road closures or deteriorated traffic conditions on their regular route. Extreme changes in traffic volume can occur under such scenarios which disrupts the network re-equilibrium and re-stabilisation in the recovery phase as travellers continuously adjust their travel options. This study explores how travellers respond to such a major network disruption. A comprehensive study was undertaken focusing on how bus riders reacted to the floods in Southeast Queensland by comparing the ridership patterns before, during and after the floods. The study outcomes revealed the evolving reactions of transit users to direct and indirect impacts of a natural disaster. A good understanding of this process is crucial for developing appropriate strategies to encourage modal shift of automobile users to public transit and also for modelling of travel behaviours during and after a major network disruption caused by natural disasters.
Resumo:
Vehicle speed is an important attribute for the utility of a transport mode. The speed relationship between multiple modes of transport is of interest to the traffic planners and operators. This paper quantifies the relationship between bus speed and average car speed by integrating Bluetooth data and Transit Signal Priority data from the urban network in Brisbane, Australia. The method proposed in this paper is the first of its kind to relate bus speed and average car speed by integrating multi-source traffic data in a corridor-based method. Three transferable regression models relating not-in-service bus; in-service bus during peak; and in-service bus during off peak periods with average car are proposed. The models are cross-validated and the interrelationships are significant
Resumo:
In this paper we analyse the effects of highway traffic flow parameters like vehicle arrival rate and density on the performance of Amplify and Forward (AF) cooperative vehicular networks along a multi-lane highway under free flow state. We derive analytical expressions for connectivity performance and verify them with Monte-Carlo simulations. When AF cooperative relaying is employed together with Maximum Ratio Combining (MRC) at the receivers the average route error rate shows 10-20 fold improvement compared to direct communication. A 4-8 fold increase in maximum number of traversable hops can also be observed at different vehicle densities when AF cooperative communication is used to strengthen communication routes. However the theorical upper bound of maximum number of hops promises higher performance gains.
Resumo:
This paper presents a mapping and navigation system for a mobile robot, which uses vision as its sole sensor modality. The system enables the robot to navigate autonomously, plan paths and avoid obstacles using a vision based topometric map of its environment. The map consists of a globally-consistent pose-graph with a local 3D point cloud attached to each of its nodes. These point clouds are used for direction independent loop closure and to dynamically generate 2D metric maps for locally optimal path planning. Using this locally semi-continuous metric space, the robot performs shortest path planning instead of following the nodes of the graph --- as is done with most other vision-only navigation approaches. The system exploits the local accuracy of visual odometry in creating local metric maps, and uses pose graph SLAM, visual appearance-based place recognition and point clouds registration to create the topometric map. The ability of the framework to sustain vision-only navigation is validated experimentally, and the system is provided as open-source software.
Resumo:
Highway infrastructure development typically requires major capital input. Unless planned properly, such requirements can cause serious financial constraints for investors. The push for sustainability adds a new dimension to the complexity of evaluating highway projects. Finding environmentally and socially responsible solutions for highway construction will improve its potential for acceptance by the society and in many instances the infrastructure's life span. Even so, the prediction and determination of a project's long-term financial viability can be a precarious exercise. Existing studies in this area have not indicated details of how to identify and deal with costs incurred in pursuing sustainability measures in highway infrastructure. This paper provides insights into the major challenges of implementing sustainability in highway project development in terms of financial concerns and obligations. It discusses the results from recent research through a literature study and a questionnaire survey of key industry stakeholders involved in highway infrastructure development. The research identified critical cost components relating to sustainability measures based on perspectives of industry stakeholders. All stakeholders believe sustainability related costs are an integral part of the decision making. However, the importance rating of these costs is relative to each stakeholder's core business objectives. This will influence the way these cost components are dealt with during the evaluation of highway investment alternatives and financial implications. This research encourages positive thinking among the highway infrastructure practitioners about sustainability. It calls for the construction industry to maximise sustainability deliverables while ensuring financial viability over the life cycle of highway infrastructure projects.
Resumo:
The auxiliary load DC-DC converters of the Sunshark solar car have never been examined. An analysis of the current design reveals it is complicated, and inefficient. Some simple measures to greatly improve the efficiency are present which will achieve an overall worthwhile power saving. Two switch-mode power supply DC-DC converter designs are presented. One is a constant current supply for the LED brake and turn indicators, which allows them to be powered directly from the main DC bus, and switched only as necessary. The second is a low power flyback converter, which employs synchronous rectification among other techniques to achieve good efficiency and regulation over a large range of output powers. Practical results from both converters, and an indication of the overall improvement in system efficiency will be offered.
Resumo:
Weather is one of the most significant elements affecting transit ridership on a daily basis. Until now, there has been limited focus in the literature investigating this issue. Adverse weather conditions impact travellers in choosing travel mode and route, travel schedule, and trip making itself. This paper explores the relationship between adverse weather and transit ridership by analysing the correlation between daily bus ridership and daily precipitation for a three-year period from 2010 to 2012. It is observed from the analysis that wet weather has varying impacts on daily bus ridership. Overall, rainfall negatively affects the daily bus ridership in this region. Morning peak-hours and weekend ridership were found more sensitive to rain than entire day’s ridership and weekdays. The study also found a negative correlation between the morning-peak precipitation level and the daily bus ridership, which suggests that a small amount of morning peak-hours rain reduces a significant amount bus ridership for the whole day. The analysis also confirms that summer rain has the most significant effect on ridership compared with the other three seasons. The study findings will contribute to enhancing the fundamental understanding of traveller behaviours, particularly mode choice behaviour under adverse weather conditions.
Resumo:
The IEC 61850 family of standards for substation communication systems were released in the early 2000s, and include IEC 61850-8-1 and IEC 61850-9-2 that enable Ethernet to be used for process-level connections between transmission substation switchyards and control rooms. This paper presents an investigation of process bus protection performance, as the in-service behavior of multi-function process buses is largely unknown. An experimental approach was adopted that used a Real Time Digital Simulator and 'live' substation automation devices. The effect of sampling synchronization error and network traffic on transformer differential protection performance was assessed and compared to conventional hard-wired connections. Ethernet was used for all sampled value measurements, circuit breaker tripping, transformer tap-changer position reports and Precision Time Protocol synchronization of sampled value merging unit sampling. Test results showed that the protection relay under investigation operated correctly with process bus network traffic approaching 100% capacity. The protection system was not adversely affected by synchronizing errors significantly larger than the standards permit, suggesting these requirements may be overly conservative. This 'closed loop' approach, using substation automation hardware, validated the operation of protection relays under extreme conditions. Digital connections using a single shared Ethernet network outperformed conventional hard-wired solutions.
Resumo:
Internationally, transit oriented development (TOD) is characterised by moderate to high density development with diverse land use patterns and well connected street networks centred around high frequency transit stops (bus and rail). Although different TOD typologies have been developed in different contexts, they are based on subjective evaluation criteria derived from the context in which they are built and typically lack a validation measure. Arguably there exist sets of TOD characteristics that perform better in certain contexts, and being able to optimise TOD effectiveness would facilitate planning and supporting policy development. This research utilises data from census collection districts (CCDs) in Brisbane with different sets of TOD attributes measured across six objectively quantified built environmental indicators: net employment density, net residential density, land use diversity, intersection density, cul-de-sac density, and public transport accessibility. Using these measures, a Two Step Cluster Analysis was conducted to identify natural groupings of the CCDs with similar profiles, resulting in four unique TOD clusters: (a) residential TODs, (b) activity centre TODs, (c) potential TODs, and; (d) TOD non-suitability. The typologies are validated by estimating a multinomial logistic regression model in order to understand the mode choice behaviour of 10,013 individuals living in these areas. Results indicate that in comparison to people living in areas classified as residential TODs, people who reside in non-TOD clusters were significantly less likely to use public transport (PT) (1.4 times), and active transport (4 times) compared to the car. People living in areas classified as potential TODs were 1.3 times less likely to use PT, and 2.5 times less likely to use active transport compared to using the car. Only a little difference in mode choice behaviour was evident between people living in areas classified as residential TODs and activity centre TODs. The results suggest that: (a) two types of TODs may be suitable for classification and effect mode choice in Brisbane; (b) TOD typology should be developed based on their TOD profile and performance matrices; (c) both bus stop and train station based TODs are suitable for development in Brisbane.
Resumo:
This paper presents mathematical models for BRT station operation, calibrated using microscopic simulation modelling. Models are presented for station capacity and bus queue length. No reliable model presently exists to estimate bus queue length. The proposed bus queue model is analogous to an unsignalized intersection queuing model.