115 resultados para ACRL Immersion
Resumo:
A health workforce ready for safe practice is a government priority, and particularly critical to support indigenous communities closing ‘the gap’. Increased pressure exists on dietetic training programs for quality placements, with fewer opportunities for immersion in Aboriginal and Torres Strait Islander communities to demonstrate cultural competence. In 2012, Queensland University of Technology established a partnership with Apunipima Cape York Health Council with 56 weeks of dietetic placement for 8 students provided to achieve these aims. Clinical practice in Community Public Health Nutrition (CPHN) was structured in a standard 6 week placement, with Individual Case Management (ICM) and Foodservice Management (FSM) integrated across 8 weeks (4 each), with an additional 2 weeks ICM prior in a metropolitan indigenous health service. Students transitioned from urban to rural then remote sites, with new web-based technologies used for support. Strong learning opportunities were provided, with CPHN projects in antenatal and child health, FSM on standardisation of procedures in a 22 bed health facility, and ICM exposing students to a variety of cases via hospital in/outpatients, general clinics and remote community outreach. Supervisor focus group evaluation was positive, with CPHN and FSM enhancing capacity of service. Student focus group evaluation revealed placements exceeded expectations, with rating high, and strong confidence in cultural competence described. Students debriefed final and third year cohorts on their experiences, with increased awareness and enthusiasm for work with indigenous communities indicated by groups. With the success of this partnership, placements are continuing 2013, and new boundaries in dietetic training established.
Resumo:
The available research literature on intimate partner violence is often centred around a heteronormative understanding of gender, relationships and violence. When it comes to intimate partner violence in the transgender community, the research is limited or nonexistent due in part to the methodological issues of visibility and access by those outside this community. Drawing from Renzetti (1992, 1995), McClennen (2003), and the feminist participatory research model, this paper examines the techniques for overcoming the methodological barriers as a cisgender or 'normatively gendered' woman in a transgender community. Throughout the research with the transgender community, five strategies for overcoming methodological barriers were developed: Cultural Immersion, Commitment and Visibility, Sensitivity and Acceptance, Honesty, and Communication. This paper explores how utilising these strategies enabled access to the transgender community in order to conduct effective research.
Resumo:
Superhydrophobic amorphous carbon/carbon nanotube nanocomposites are fabricated by plasma immersion ion implantation with carbon nanotube forests as a template. The microstructure of the fabricated nanocomposites shows arrays of carbon nanotubes capped with amorphous carbon nanoparticles. Contact angle measurements show that both advancing and receding angles close to 180° can be achieved on the nanocomposites. The fabrication here does not require patterning of carbon nanotubes or deposition of conformal coatings with low surface energy, which are usually involved in conventional approaches for superhydrophobic surfaces. The relationship between the observed superhydrophobicity and the unique microstructure of the nanocomposites is discussed. © 2009 American Institute of Physics.
Resumo:
The plasma-assisted RF sputtering deposition of a biocompatible, functionally graded calcium phosphate bioceramic on a Ti6A14 V orthopedic alloy is reported. The chemical composition and presence of hydroxyapatite (HA), CaTiO3, and CaO mineral phases can be effectively controlled by the process parameters. At higher DC biases, the ratio [Ca]/[P] and the amount of CaO increase, whereas the HA content decreases. Optical emission spectroscopy suggests that CaO+ is the dominant species that responds to negative DC bias and controls calcium content. Biocompatibility tests in simulated body fluid confirm a positive biomimetic response evidenced by in-growth of an apatite layer after 24 h of immersion.
Resumo:
Patients with burn wounds are susceptible to wound infection and sepsis. This research introduces a novel burn wound dressing that contains silver nanoparticles (SNPs) to treat infection in a 2-acrylamido-2-methylpropane sulfonic acid sodium salt (AMPS-Na(+) ) hydrogel. Silver nitrate was dissolved in AMPS-Na(+) solution and then exposed to gamma irradiation to form SNP-infused hydrogels. The gamma irradiation results in a cross-linked polymeric network of sterile hydrogel dressing and a reduction of silver ions to form SNPs infused in the hydrogel in a one-step process. About 80% of the total silver was released from the hydrogels after 72 h immersion in simulated body fluid solution; therefore, they could be used on wounds for up to 3 days. All the hydrogels were found to be nontoxic to normal human dermal fibroblast cells. The silver-loaded hydrogels had good inhibitory action against Pseudomonas aeruginosa and methicillin-resistant Staphylococcus aureus. Results from a pilot study on a porcine burn model showed that the 5-mM silver hydrogel was efficient at preventing bacterial colonization of wounds, and the results were comparable to the commercially available silver dressings (Acticoat(TM) , PolyMem Silver(®) ). These results support its use as a potential burn wound dressing.
Resumo:
Collaboration is one of the top trends in academic librarianship in the United States as noted by the Association of College and Research Libraries (ACRL), and is likely to be a growing trend in other countries as well (Association of College and Research Libraries [ACRL] Research Planning and Review Committee, 2014). While ACRL is focusing on library participation in various initiatives and projects on campus that are external to the library, this trend can be broadened to include the possibility for further collaboration within many academic libraries between the librarians and archivists.
Resumo:
The use of circular hollow steel members has attracted a great deal of attention during past few years because of having excellent structural properties, aesthetic appearance, corrosion and fire protection capability. However, no one can deny the structural deficiency of such structures due to reduction of strength when they are exposed to severe environmental conditions such as marine environment, cold and hot weather. Hence strengthening and retrofitting of structural steel members is now very imperative. This paper presents the findings of a research program that was conducted to study the bond durability of carbon fibre-reinforced polymer (CFRP) strengthened steel tubular members under cold weather and tested under four-point bending. Six number of CFRP-strengthened specimens and one unstrengthened specimen were considered in this program. The three specimens having sand blasted surface to be strengthened was pre-treated with MBrace primer and other three were remained untreated and then cured under ambient temperature at least four weeks and cold weather (3 C) for three and six months period of time. Quasi-static tests were then performed on beams to failure under four-point bending. The structural response of each specimen was predicted in terms of failure load, mid-span deflection, composite beam behaviour and failure mode. The research outcomes show that the cold weather immersion had an adverse effect on durability of CFRP-strengthened steel structures. Moreover, the epoxy based adhesion promoter was found to enhance the bond durability in plastic range. The analytical models presented in this study were found to be in good agreement in terms of predicting ultimate load and deflection. Finally, design factors are proposed to address the short-terms durability performance under cold weather.
Resumo:
A 3hr large scale participatory installation/event that included live performance, video works,objects, fabric sculptures and was the result of a three month artist residency undertaken by Cam Lab (Jemima Wyman and Anna Mayer)at the Museum of Contemporary Art Los Angeles California. The exhibition transformed two adjoining spaces in the museum, taking design cues from permanent collection artworks currently on view and encouraged gallery visitors to oscillate between immersion and agency as they occupy the various perspectives proposed by the installation.
Resumo:
Video games provide unique interactive player experiences (PX) often categorised into different genres. Prior research has looked at different game genres, but rarely through a PX lens. Especially, PX in the emerging area of massive online battle arena (MOBA) games is not well understood by researchers in the field. We address this knowledge gap by presenting a PX study of different game genres, which we followed up with a second semi-structured interview study about PX in MOBA games. Among the results of our analyses are that games that are likely played with other players, such as MOBA games, stimulate less immersion and presence for players. Additionally, while challenge and frustration are significantly higher in this genre, players get a sense of satisfaction from teamwork, competition and mastery of complex gameplay interactions. Our study is the first to contribute a comprehensive insight into key motivators of MOBA players and how PX in this genre is different from other genres.
Resumo:
Systems-level identification and analysis of cellular circuits in the brain will require the development of whole-brain imaging with single-cell resolution. To this end, we performed comprehensive chemical screening to develop a whole-brain clearing and imaging method, termed CUBIC (clear, unobstructed brain imaging cocktails and computational analysis). CUBIC is a simple and efficient method involving the immersion of brain samples in chemical mixtures containing aminoalcohols, which enables rapid whole-brain imaging with single-photon excitation microscopy. CUBIC is applicable to multicolor imaging of fluorescent proteins or immunostained samples in adult brains and is scalable from a primate brain to subcellular structures. We also developed a whole-brain cell-nuclear counterstaining protocol and a computational image analysis pipeline that, together with CUBIC reagents, enable the visualization and quantification of neural activities induced by environmental stimulation. CUBIC enables time-course expression profiling of whole adult brains with single-cell resolution.
Resumo:
This article examines journalism students' learning experience that is intercultural, immersive and intensive. Accounts of 'intercultural' experience date back to Herodotus of Halicarnassus; 'immersion' is integral to contemporary practice in language learning; and 'intensive' delivery has been refined to an art by postgraduate business education. Together they can be grouped under the broader pedagogical concept of work-integrated learning (WIL). This article examines two WIL projects that involved field trips by journalism students to Vietnam in 2012 and 2014, and their implications for future WIL initiatives.
Resumo:
Aims: The Medical Imaging Training Immersive Environment(MITIE) Computed Tomography(CT) system is an innovative virtual reality (VR) platform that allows students to practice a range of CT techniques. The aim of this pilot study was to harvest user feedback about the educational value of teh application and inform future pedagogical development. This presentation explores the use of this technology for skills training. Background: MITIE CT is a 3D VR environment that allows students to position a patient,and set CT technical parameters including IV contrast dose and dose rate. As with VR initiatives in other health disciplines the software mimics clinical practice as much as possible and uses 3D technology to enhance immersion and realism. The software is new and was developed by the Medical Imaging Course Team at a provider University with funding from a Health Workforce Australia 'Simulated Learning Environments' grant Methods: Current third year medical imaging students were provided with additional 1 hour MITIE laboratory tutorials and studnet feedback was collated with regard to educational value and performance. Ethical approval for the project was provided by the university ethics panel Results: This presentation provides qualitative analysis of student perceptions relating to satisfaction, usability and educational value. Students reported high levels of satisfaction and both feedback and assessment results confirmed the application's significance as a pre-clinical tool. There was a clear emerging theme that MITIE could be a useful learning tool that students could access to consolidate their clinical learning, either on campus or during their clinical placement. Conclusion: Student feedback indicates that MITIE CT has a valuable role to play in the clinial skills training for medical imaging students both in the academic and clinical environment. Future work will establish a framework for an appropriate supprting pedagogy that can cross the boundary between the two environments
Resumo:
The concept of specificity of exercise prescription and training is a longstanding and widely accepted foundation of the exercise sciences. Simply, the principle holds that training adaptations are achieved relative to the stimulus applied. That is, the manipulation of training variables (e.g. intensity or loading, mode, volume and frequency) directly influences the acute training stimulus, and so the long-term adaptive response (Young et al., 2001; Bird et al., 2005). Translating this concept to practice then recommends that exercise be prescribed specific to the desired outcomes, and the more closely this is achieved, the greater the performance gain is likely to be. However, the cardiovascular and metabolic adaptations traditionally associated with long, slow distance training types, similarly achieved using high-intensity training methods (for a review see Gibala et al., 2012), highlights understanding of underlying physiology as paramount for effective training program design. Various other factors including illness, sleep and psychology also impact on the training stimulus (Halson, 2014) and must be managed collectively with appropriate post-exercise recovery to continue performance improvements and reduce overtraining and injury risks (Kenttä and Hassmén, 1998).
Resumo:
Achieving the combination of delayed and immediate release of a vaccine from a delivery device without applying external triggers remains elusive in implementing single administration vaccination strategies. Here a means of vaccine delivery is presented, which exploits osmosis to trigger delayed burst release of an active compound. Poly(-caprolactone) capsules of 2 mm diameter were prepared by dip-coating, and their burst pressure and release characteristics were evaluated. Burst pressures (in bar) increased with wall thickness (t in mm) following Pburst = 131.t + 3.4 (R2 = 0.93). Upon immersion in PBS, glucose solution-filled capsules burst after 8.7 ± 2.9 days. Copolymers of hydrophobic -caprolactone and hydrophilic polyethylene glycol were synthesized and their physico-chemical properties were assessed. With increasing hydrophilic content, the copolymer capsules showed increased water uptake rates and maximum weight increase, while the burst release was earlier: 5.6 ± 2.0 days and 1.9 ± 0.2 days for 5 and 10 wt% polyethylene glycol, respectively. The presented approach enables the reproducible preparation of capsules with high versatility in materials and properties, while these vaccine delivery vehicles can be prepared separately from, and independently of the active compound.
Resumo:
Based on a year long honours research program at University of South Australia, the design is a conceptual proposal of a space in Rundle Mall in Adelaide's city centre exploring notions of immersion and flow.