150 resultados para 185-1149A
Resumo:
About 140-year changes in the trace metals in Porites coral samples from two locations in the northern South China Sea were investigated. Results of PCA analyses suggest that near the coast, terrestrial input impacted behavior of trace metals by 28.4%, impact of Sea Surface Temperature (SST) was 19.0%, contribution of war and infrastructure were 14.4% and 15.6% respectively. But for a location in the open sea, contribution of War and SST reached 33.2% and 16.5%, while activities of infrastructure and guano exploration reached 13.2% and 14.7%. While the spatiotemporal change model of Cu, Cd and Pb in seawater of the north area of South China Sea during 1986–1997 were reconstructed. It was found that in the sea area Cu and Cd contaminations were distributed near the coast while areas around Sanya, Hainan had high Pb levels because of the well-developed tourism related activities.
Resumo:
This review examines the multiple levels of pre-existing immunity in the upper and lower female reproductive tract. In addition, we highlight the need for further research of innate and adaptive immune protection of mucosal surfaces in the female reproductive tract. Innate mechanisms include the mucus lining, a tight epithelial barrier and the secretion of antimicrobial peptides and cytokines by epithelial and innate immune cells. Stimulation of the innate immune system also serves to bridge the adaptive arm resulting in the generation of pathogen-specific humoral and cell-mediated immunity. Less understood are the multiple components that act in a coordinated way to provide a network of ongoing protection. Innate and adaptive immunity in the human female reproductive tract are influenced by the stage of menstrual cycle and are directly regulated by the sex steroid hormones, progesterone and estradiol. Furthermore, the effect of hormones on immunity is mediated both directly on immune and epithelial cells and indirectly by stimulating growth factor secretion from stromal cells. The goal of this review is to focus on the diverse aspects of the innate and adaptive immune systems that contribute to a unique network of protection throughout the female reproductive tract.
Resumo:
This paper focuses on Australian development firms in the console and mobile games industry in order to understand how small firms in a geographically remote and marginal position in the global industry are able to relate to global firms and capture revenue share. This paper shows that, while technological change in the games industry has resulted in the emergence of new industry segments based on transactional rather than relational forms of economic coordination, in which we might therefore expect less asymmetrical power relations, lead firms retain a position of power in the global games entertainment industry relative to remote developers. This has been possible because lead firms in the emerging mobile devices market have developed and sustained bottlenecks in their segment of the industry through platform competition and the development of an intensely competitive ecosystem of developers. Our research shows the critical role of platform competition and bottlenecks in influencing power asymmetries within global markets.
Resumo:
Epigenetic regulation of gene expression is an important event for normal cellular homeostasis. Gene expression may be "switched" on or "turned" off via epigenetic means through adjustments in DNA architecture. These structural alterations result from changes to the DNA methylation status in addition to histone posttranslational modifications such as acetylation and methylation. Drugs which can alter the status of these epigenetic markers are currently undergoing clinical trials in a wide variety of diseases, including cancer.We illustrate the treatment of cell lines with histone deacetylase (HDi) and DNA methyltransferase inhibitors and the subsequent RNA isolation and reverse transcriptase polymerase chain reaction for several members of the CXC (ELR(+)) chemokine family. In addition we describe a chromatin immunoprecipitation assay to determine the association between chromatin transcription markers and DNA following pretreatment of cell cultures with an HDi, Trichostatin A (TSA). This assay allows us to determine whether treatment with TSA dynamically remodels the promoter region of our selected genes, as judged by the differences in the PCR product between our treated and untreated samples.
Resumo:
Mosquito-borne diseases pose some of the greatest challenges in public health, especially in tropical and sub-tropical regions of theworld. Efforts to control these diseases have been underpinned by a theoretical framework developed for malaria by Ross and Macdonald, including models, metrics for measuring transmission, and theory of control that identifies key vulnerabilities in the transmission cycle. That framework, especially Macdonald’s formula for R0 and its entomological derivative, vectorial capacity, are nowused to study dynamics and design interventions for many mosquito-borne diseases. A systematic review of 388 models published between 1970 and 2010 found that the vast majority adopted the Ross–Macdonald assumption of homogeneous transmission in a well-mixed population. Studies comparing models and data question these assumptions and point to the capacity to model heterogeneous, focal transmission as the most important but relatively unexplored component in current theory. Fine-scale heterogeneity causes transmission dynamics to be nonlinear, and poses problems for modeling, epidemiology and measurement. Novel mathematical approaches show how heterogeneity arises from the biology and the landscape on which the processes of mosquito biting and pathogen transmission unfold. Emerging theory focuses attention on the ecological and social context formosquito blood feeding, themovement of both hosts and mosquitoes, and the relevant spatial scales for measuring transmission and for modeling dynamics and control.
Resumo:
In this work, we propose a new generalization of the notion of group signatures, that allows signers to cover the entire spectrum from complete disclosure to complete anonymity. Previous group signature constructions did not provide any disclosure capability, or at best a very limited one (such as subset membership). Our scheme offers a very powerful language for disclosing exactly in what capacity a subgroup of signers is making a signature on behalf of the group.
Resumo:
Complex numbers are a fundamental aspect of the mathematical formalism of quantum physics. Quantum-like models developed outside physics often overlooked the role of complex numbers. Specifically, previous models in Information Retrieval (IR) ignored complex numbers. We argue that to advance the use of quantum models of IR, one has to lift the constraint of real-valued representations of the information space, and package more information within the representation by means of complex numbers. As a first attempt, we propose a complex-valued representation for IR, which explicitly uses complex valued Hilbert spaces, and thus where terms, documents and queries are represented as complex-valued vectors. The proposal consists of integrating distributional semantics evidence within the real component of a term vector; whereas, ontological information is encoded in the imaginary component. Our proposal has the merit of lifting the role of complex numbers from a computational byproduct of the model to the very mathematical texture that unifies different levels of semantic information. An empirical instantiation of our proposal is tested in the TREC Medical Record task of retrieving cohorts for clinical studies.
Resumo:
In January 2013, Apple Inc obtained United States trademarks for the design and layout of its retail stores. While innovative brand protection strategies of this kind are not without precedent in the United States, traders in Australia have seemingly not adopted them. This article considers the prospects of an applicant seeking to register a similar trade mark in Australia and the protection such a registration would likely provide.
Resumo:
Some minerals are colloidal and show no X-ray diffraction patterns. Vibrational spectroscopy offers one of the few methods for the assessment of the structure of these types of mineral. Among this group of minerals is pitticite simply described as Fe, AsO4, SO4, H2O. The objective of this research is to determine the molecular structure of the mineral pitticite using vibrational spectroscopy. Raman microscopy offers a useful method for the analysis of such colloidal minerals. Raman and infrared bands are attributed to the , and water stretching vibrations. The Raman spectrum is dominated by a very intense sharp band at 983 cm−1 assigned to the symmetric stretching mode. A strong Raman band at 1041 cm−1 is observed and is assigned to the antisymmetric stretching mode. Low intensity Raman bands at 757 and 808 cm−1 may be assigned to the antisymmetric and symmetric stretching modes. Raman bands observed at 432 and 465 cm−1 are attributable to the doubly degenerate ν2(SO4)2- bending mode.
Resumo:
Purpose The purpose of this study was to evaluate age and gender differences in objectively measured physical activity (PA) in a population-based sample of students in grades 1–12. Methods Participants (185 male, 190 female) wore a CSA 7164 accelerometer for 7 consecutive days. To examine age-related trends, students were grouped as follows: grades 1–3 (N = 90), grades 4–6 (N = 91), grades 7–9 (N = 96), and grades 10–12 (N = 92). Bouts of PA and minutes spent in moderate-to-vigorous PA (MVPA) and vigorous PA (VPA) were examined. Results Daily MVPA and VPA exhibited a significant inverse relationship with grade level, with the largest differences occurring between grades 1–3 and 4–6. Boys were more active than girls; however, for overall PA, the magnitudes of the gender differences were modest. Participation in continuous 20-min bouts of PA was low to nonexistent. Conclusion Our results support the notion that PA declines rapidly during childhood and adolescence and that accelerometers are feasible alternatives to self-report methods in moderately sized population-level surveillance studies.
Resumo:
We have previously reported that induction of MMP-2 activation by Concanavalin A (ConA) in MDA-MB-231 human breast cancer cells involves both transcriptional and post-transcriptional mechanisms, and that the continuous presence of ConA is required for MMP-2 activation (Yu et al. Cancer Res, 55, 3272-7, 1995). In an effort to identify signal transduction pathways which may either contribute to or modulate this mechanism, we found that three different cAMP-inducing agents, cholera toxin (CT), forskolin (FSK), and 3- isobutyl-1-methylxanthine (IBMX) partially inhibited ConA-induced MT1-MMP expression and MMP-2 activation in MDA-MB-231 cells. Combinations of CT or FSK with IBMX exhibited additive effects on reduction of MT1-MMP mRNA expression and MMP-2 activation. Agents which increase cAMP levels appeared to target transcriptional aspects of ConA induction, reducing MT1-MMP mRNA and protein in parallel with the reduced MMP-2 activation. In the absence of ConA, down-regulation of constitutive production of MT1-MMP mRNA and protein was observed, indicating that cAMP acts independently of ConA. These observations may help to elucidate factors regulating MT1-MMP expression, which may be pivotal to the elaboration of invasive machinery on the cell surface.
Resumo:
Cellular plasticity is fundamental to embryonic development. The importance of cellular transitions in development is first apparent during gastrulation when the process of epithelial to mesenchymal transition transforms polarized epithelial cells into migratory mesenchymal cells that constitute the embryonic and extraembryonic mesoderm. It is now widely accepted that this developmental pathway is exploited in various disease states, including cancer progression. The loss of epithelial characteristics and the acquisition of a mesenchymal-like migratory phenotype are crucial to the development of invasive carcinoma and metastasis. However, given the morphological similarities between primary tumour and metastatic lesions, it is likely that tumour cells re-activate certain epithelial properties through a mesenchymal to epithelial transition (MET) at the secondary site, although this is yet to be proven. MET is also an essential developmental process and has been extensively studied in kidney organogenesis and somitogenesis. In this review we describe the process of MET, highlight important mediators, and discuss their implication in the context of cancer progression.
Resumo:
Breast cancer is a highly prevalent disease among women worldwide. While the expression of certain proteins within these tumours is used for prognosis and selection of therapies, there is a continuing need for additional markers to be identified. A considerable amount of current literature, based predominantly on cell culture systems, suggests that a major mechanism responsible for the progression of breast cancer is due to tumour cells losing their epithelial features and gaining mesenchymal properties. These events are proposed to be very similar to the epithelial-mesenchymal transition (EMT) process that has been well characterised in embryonic development. For the developmental and putative cancer EMT, the cell intermediate filament status changes from a keratin-rich network which connects to adherens junctions and hemidesmosomes, to a vimentin-rich network connecting to focal adhesions. This review summarises observations of vimentin expression in breast cancer model systems, and discusses the potential role of EMT in human breast cancer progression, and the prognostic usefulness of vimentin expression.