92 resultados para scattering parameter
Resumo:
Conventional voltage driven gate drive circuits utilise a resistor to control the switching speed of power MOS-FETs. The gate resistance is adjusted to provide controlled rate of change of load current and voltage. The cascode gate drive configuration has been proposed as an alternative to the conventional resistor-fed gate drive circuit. While cascode drive is broadly understood in the literature the switching characteristics of this topology are not well documented. This paper explores, through both simulation and experimentation, the gate drive parameter space of the cascode gate drive configuration and provides a comparison to the switching characteristics of conventional gate drive.
Resumo:
Wound healing and tumour growth involve collective cell spreading, which is driven by individual motility and proliferation events within a population of cells. Mathematical models are often used to interpret experimental data and to estimate the parameters so that predictions can be made. Existing methods for parameter estimation typically assume that these parameters are constants and often ignore any uncertainty in the estimated values. We use approximate Bayesian computation (ABC) to estimate the cell diffusivity, D, and the cell proliferation rate, λ, from a discrete model of collective cell spreading, and we quantify the uncertainty associated with these estimates using Bayesian inference. We use a detailed experimental data set describing the collective cell spreading of 3T3 fibroblast cells. The ABC analysis is conducted for different combinations of initial cell densities and experimental times in two separate scenarios: (i) where collective cell spreading is driven by cell motility alone, and (ii) where collective cell spreading is driven by combined cell motility and cell proliferation. We find that D can be estimated precisely, with a small coefficient of variation (CV) of 2–6%. Our results indicate that D appears to depend on the experimental time, which is a feature that has been previously overlooked. Assuming that the values of D are the same in both experimental scenarios, we use the information about D from the first experimental scenario to obtain reasonably precise estimates of λ, with a CV between 4 and 12%. Our estimates of D and λ are consistent with previously reported values; however, our method is based on a straightforward measurement of the position of the leading edge whereas previous approaches have involved expensive cell counting techniques. Additional insights gained using a fully Bayesian approach justify the computational cost, especially since it allows us to accommodate information from different experiments in a principled way.
Resumo:
Nowadays, demand for automated Gas metal arc welding (GMAW) is growing and consequently need for intelligent systems is increased to ensure the accuracy of the procedure. To date, welding pool geometry has been the most used factor in quality assessment of intelligent welding systems. But, it has recently been found that Mahalanobis Distance (MD) not only can be used for this purpose but also is more efficient. In the present paper, Artificial Neural Networks (ANN) has been used for prediction of MD parameter. However, advantages and disadvantages of other methods have been discussed. The Levenberg–Marquardt algorithm was found to be the most effective algorithm for GMAW process. It is known that the number of neurons plays an important role in optimal network design. In this work, using trial and error method, it has been found that 30 is the optimal number of neurons. The model has been investigated with different number of layers in Multilayer Perceptron (MLP) architecture and has been shown that for the aim of this work the optimal result is obtained when using MLP with one layer. Robustness of the system has been evaluated by adding noise into the input data and studying the effect of the noise in prediction capability of the network. The experiments for this study were conducted in an automated GMAW setup that was integrated with data acquisition system and prepared in a laboratory for welding of steel plate with 12 mm in thickness. The accuracy of the network was evaluated by Root Mean Squared (RMS) error between the measured and the estimated values. The low error value (about 0.008) reflects the good accuracy of the model. Also the comparison of the predicted results by ANN and the test data set showed very good agreement that reveals the predictive power of the model. Therefore, the ANN model offered in here for GMA welding process can be used effectively for prediction goals.
Resumo:
In this paper, we propose a novel online hidden Markov model (HMM) parameter estimator based on the new information-theoretic concept of one-step Kerridge inaccuracy (OKI). Under several regulatory conditions, we establish a convergence result (and some limited strong consistency results) for our proposed online OKI-based parameter estimator. In simulation studies, we illustrate the global convergence behaviour of our proposed estimator and provide a counter-example illustrating the local convergence of other popular HMM parameter estimators.
Resumo:
A facile and sensitive surface-enhanced Raman scattering substrate was prepared by controlled potentiostatic deposition of a closely packed single layer of gold nanostructures (AuNS) over a flat gold (pAu) platform. The nanometer scale inter-particle distance between the particles resulted in high population of ‘hot spots’ which enormously enhanced the scattered Raman photons. A renewed methodology was followed to precisely quantify the SERS substrate enhancement factor (SSEF) and it was estimated to be (2.2 ± 0.17) × 105. The reproducibility of the SERS signal acquired by the developed substrate was tested by establishing the relative standard deviation (RSD) of 150 repeated measurements from various locations on the substrate surface. A low RSD of 4.37 confirmed the homogeneity of the developed substrate. The sensitivity of pAu/AuNS was proven by determining 100 fM 2,4,6-trinitrotoluene (TNT) comfortably. As a proof of concept on the potential of the new pAu/AuNS substrate in field analysis, TNT in soil and water matrices was selectively detected after forming a Meisenheimer complex with cysteamine.
Resumo:
2,4,6-trinitrotoluene (TNT) is one of the most commonly used nitro aromatic explosives in landmine, military and mining industry. This article demonstrates rapid and selective identification of TNT by surface-enhanced Raman spectroscopy (SERS) using 6-aminohexanethiol (AHT) as a new recognition molecule. First, Meisenheimer complex formation between AHT and TNT is confirmed by the development of pink colour and appearance of new band around 500 nm in UV-visible spectrum. Solution Raman spectroscopy study also supported the AHT:TNT complex formation by demonstrating changes in the vibrational stretching of AHT molecule between 2800-3000 cm−1. For surface enhanced Raman spectroscopy analysis, a self-assembled monolayer (SAM) of AHT is formed over the gold nanostructure (AuNS) SERS substrate in order to selectively capture TNT onto the surface. Electrochemical desorption and X-ray photoelectron studies are performed over AHT SAM modified surface to examine the presence of free amine groups with appropriate orientation for complex formation. Further, AHT and butanethiol (BT) mixed monolayer system is explored to improve the AHT:TNT complex formation efficiency. Using a 9:1 AHT:BT mixed monolayer, a very low detection limit (LOD) of 100 fM TNT was realized. The new method delivers high selectivity towards TNT over 2,4 DNT and picric acid. Finally, real sample analysis is demonstrated by the extraction and SERS detection of 302 pM of TNT from spiked.
Resumo:
The total entropy utility function is considered for the dual purpose of Bayesian design for model discrimination and parameter estimation. A sequential design setting is proposed where it is shown how to efficiently estimate the total entropy utility for a wide variety of data types. Utility estimation relies on forming particle approximations to a number of intractable integrals which is afforded by the use of the sequential Monte Carlo algorithm for Bayesian inference. A number of motivating examples are considered for demonstrating the performance of total entropy in comparison to utilities for model discrimination and parameter estimation. The results suggest that the total entropy utility selects designs which are efficient under both experimental goals with little compromise in achieving either goal. As such, the total entropy utility is advocated as a general utility for Bayesian design in the presence of model uncertainty.
Resumo:
In this paper we have used simulations to make a conjecture about the coverage of a t-dimensional subspace of a d-dimensional parameter space of size n when performing k trials of Latin Hypercube sampling. This takes the form P(k,n,d,t) = 1 - e^(-k/n^(t-1)). We suggest that this coverage formula is independent of d and this allows us to make connections between building Populations of Models and Experimental Designs. We also show that Orthogonal sampling is superior to Latin Hypercube sampling in terms of allowing a more uniform coverage of the t-dimensional subspace at the sub-block size level. These ideas have particular relevance when attempting to perform uncertainty quantification and sensitivity analyses.
Resumo:
Stochastic (or random) processes are inherent to numerous fields of human endeavour including engineering, science, and business and finance. This thesis presents multiple novel methods for quickly detecting and estimating uncertainties in several important classes of stochastic processes. The significance of these novel methods is demonstrated by employing them to detect aircraft manoeuvres in video signals in the important application of autonomous mid-air collision avoidance.
Resumo:
In this paper we provide estimates for the coverage of parameter space when using Latin Hypercube Sampling, which forms the basis of building so-called populations of models. The estimates are obtained using combinatorial counting arguments to determine how many trials, k, are needed in order to obtain specified parameter space coverage for a given value of the discretisation size n. In the case of two dimensions, we show that if the ratio (Ø) of trials to discretisation size is greater than 1, then as n becomes moderately large the fractional coverage behaves as 1-exp-ø. We compare these estimates with simulation results obtained from an implementation of Latin Hypercube Sampling using MATLAB.
Resumo:
A novel, highly selective resonance light scattering (RLS) method was researched and developed for the analysis of phenol in different types of industrial water. An important aspect of the method involved the use of graphene quantum dots (GQDs), which were initially obtained from the pyrolysis of citric acid dissolved in aqueous solutions. The GQDs in the presence of horseradish peroxidase (HRP) and H2O2 were found to react quantitatively with phenol such that the RLS spectral band (310 nm) was quantitatively enhanced as a consequence of the interaction between the GQDs and the quinone formed in the above reaction. It was demonstrated that the novel analytical method had better selectivity and sensitivity for the determination of phenol in water as compared to other analytical methods found in the literature. Thus, trace amounts of phenol were detected over the linear ranges of 6.00×10−8–2.16×10−6 M and 2.40×10−6–2.88×10−5 M with a detection limit of 2.20×10−8 M. In addition, three different spiked waste water samples and two untreated lake water samples were analysed for phenol. Satisfactory results were obtained with the use of the novel, sensitive and rapid RLS method.
Resumo:
This paper demonstrates the procedures for probabilistic assessment of a pesticide fate and transport model, PCPF-1, to elucidate the modeling uncertainty using the Monte Carlo technique. Sensitivity analyses are performed to investigate the influence of herbicide characteristics and related soil properties on model outputs using four popular rice herbicides: mefenacet, pretilachlor, bensulfuron-methyl and imazosulfuron. Uncertainty quantification showed that the simulated concentrations in paddy water varied more than those of paddy soil. This tendency decreased as the simulation proceeded to a later period but remained important for herbicides having either high solubility or a high 1st-order dissolution rate. The sensitivity analysis indicated that PCPF-1 parameters requiring careful determination are primarily those involve with herbicide adsorption (the organic carbon content, the bulk density and the volumetric saturated water content), secondary parameters related with herbicide mass distribution between paddy water and soil (1st-order desorption and dissolution rates) and lastly, those involving herbicide degradations. © Pesticide Science Society of Japan.
Resumo:
Bone diseases such as rickets and osteoporosis cause significant reduction in bone quantity and quality, which leads to mechanical abnormalities. However, the precise ultrastructural mechanism by which altered bone quality affects mechanical properties is not clearly understood. Here we demonstrate the functional link between altered bone quality (reduced mineralization) and abnormal fibrillar-level mechanics using a novel, real-time synchrotron X-ray nanomechanical imaging method to study a mouse model with rickets due to reduced extrafibrillar mineralization. A previously unreported N-ethyl-N-nitrosourea (ENU) mouse model for hypophosphatemic rickets (Hpr), as a result of missense Trp314Arg mutation of the phosphate regulating gene with homologies to endopeptidase on the X chromosome (Phex) and with features consistent with X-linked hypophosphatemic rickets (XLHR) in man, was investigated using in situ synchrotron small angle X-ray scattering to measure real-time changes in axial periodicity of the nanoscale mineralized fibrils in bone during tensile loading. These determine nanomechanical parameters including fibril elastic modulus and maximum fibril strain. Mineral content was estimated using backscattered electron imaging. A significant reduction of effective fibril modulus and enhancement of maximum fibril strain was found in Hpr mice. Effective fibril modulus and maximum fibril strain in the elastic region increased consistently with age in Hpr and wild-type mice. However, the mean mineral content was ∼21% lower in Hpr mice and was more heterogeneous in its distribution. Our results are consistent with a nanostructural mechanism in which incompletely mineralized fibrils show greater extensibility and lower stiffness, leading to macroscopic outcomes such as greater bone flexibility. Our study demonstrates the value of in situ X-ray nanomechanical imaging in linking the alterations in bone nanostructure to nanoscale mechanical deterioration in a metabolic bone disease. Copyright
Resumo:
The method of generalized estimating equations (GEEs) provides consistent estimates of the regression parameters in a marginal regression model for longitudinal data, even when the working correlation model is misspecified (Liang and Zeger, 1986). However, the efficiency of a GEE estimate can be seriously affected by the choice of the working correlation model. This study addresses this problem by proposing a hybrid method that combines multiple GEEs based on different working correlation models, using the empirical likelihood method (Qin and Lawless, 1994). Analyses show that this hybrid method is more efficient than a GEE using a misspecified working correlation model. Furthermore, if one of the working correlation structures correctly models the within-subject correlations, then this hybrid method provides the most efficient parameter estimates. In simulations, the hybrid method's finite-sample performance is superior to a GEE under any of the commonly used working correlation models and is almost fully efficient in all scenarios studied. The hybrid method is illustrated using data from a longitudinal study of the respiratory infection rates in 275 Indonesian children.