149 resultados para dna repair


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cell proliferation is a critical and frequently studied feature of molecular biology in cancer research. Therefore, various assays are available using different strategies to measure cell proliferation. Metabolic assays such as AlamarBlue, WST-1, and MTT, which were originally developed to determine cell toxicity, are being used to assess cell numbers. Additionally, proliferative activity can be determined by quantification of DNA content using fluorophores, such as CyQuant and PicoGreen. Referring to data published in high ranking cancer journals, 945 publications applied these assays over the past 14 years to examine the proliferative behaviour of diverse cell types. Within this study, mainly metabolic assays were used to quantify changes in cell growth yet these assays may not accurately reflect cellular proliferation rates due to a miscorrelation of metabolic activity and cell number. Testing this hypothesis, we compared metabolic activity of different cell types, human cancer cells and primary cells, over a time period of 4 days using AlamarBlue and fluorometric assays CyQuant and PicoGreen to determine their DNA content. Our results show certain discrepancies in terms of over-estimation of cell proliferation with respect to the metabolic assay in comparison to DNA binding fluorophores.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Healing large bone defects and non-unions remains a significant clinical problem. Current treatments, consisting of auto and allografts, are limited by donor supply and morbidity, insufficient bioactivity and risk of infection. Biotherapeutics, including cells, genes and proteins, represent promising alternative therapies, but these strategies are limited by technical roadblocks to biotherapeutic delivery, cell sourcing, high cost, and regulatory hurdles. In the present study, the collagen-mimetic peptide, GFOGER, was used to coat synthetic PCL scaffolds to promote bone formation in critically-sized segmental defects in rats. GFOGER is a synthetic triple helical peptide that binds to the [alpha]2[beta]1 integrin receptor involved in osteogenesis. GFOGER coatings passively adsorbed onto polymeric scaffolds, in the absence of exogenous cells or growth factors, significantly accelerated and increased bone formation in non-healing femoral defects compared to uncoated scaffolds and empty defects. Despite differences in bone volume, no differences in torsional strength were detected after 12 weeks, indicating that bone mass but not bone quality was improved in this model. This work demonstrates a simple, cell/growth factor-free strategy to promote bone formation in challenging, non-healing bone defects. This biomaterial coating strategy represents a cost-effective and facile approach, translatable into a robust clinical therapy for musculoskeletal applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider multi-robot systems that include sensor nodes and aerial or ground robots networked together. Such networks are suitable for tasks such as large-scale environmental monitoring or for command and control in emergency situations. We present a sensor network deployment method using autonomous aerial vehicles and describe in detail the algorithms used for deployment and for measuring network connectivity and provide experimental data collected from field trials. A particular focus is on determining gaps in connectivity of the deployed network and generating a plan for repair, to complete the connectivity. This project is the result of a collaboration between three robotics labs (CSIRO, USC, and Dartmouth). © Springer-Verlag Berlin/Heidelberg 2006.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe a sensor network deployment method using autonomous flying robots. Such networks are suitable for tasks such as large-scale environmental monitoring or for command and control in emergency situations. We describe in detail the algorithms used for deployment and for measuring network connectivity and provide experimental data we collected from field trials. A particular focus is on determining gaps in connectivity of the deployed network and generating a plan for a second, repair, pass to complete the connectivity. This project is the result of a collaboration between three robotics labs (CSIRO, USC, and Dartmouth.).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background The preservation of meniscal tissue is important to protect joint surfaces. Purpose We have an aggressive approach to meniscal repair, including repairing tears other than those classically suited to repair. Here we present the medium- to long-term outcome of meniscal repair (inside-out) in elite athletes. Study Design Case series; Level of evidence, 4. Methods Forty-two elite athletes underwent 45 meniscal repairs. All repairs were performed using an arthroscopically assisted inside-out technique. Eighty-three percent of these athletes had ACL reconstruction at the same time. Patients returned a completed questionnaire (including Lysholm and International Knee Documentation Committee [IKDC] scores). Mean follow-up was 8.5 years. Failure was defined by patients developing symptoms of joint line pain and/or locking or swelling requiring repeat arthroscopy and partial meniscectomy. Results The average Lysholm and subjective IKDC scores were 89.6 and 85.4, respectively. Eighty-one percent of patients returned to their main sport and most to a similar level at a mean time of 10.4 months after repair, reflecting the high level of ACL reconstruction in this group. We identified 11 definite failures, 10 medial and 1 lateral meniscus, that required excision; this represents a 24% failure rate. We identified 1 further patient who had possible failed repairs, giving a worst-case failure rate of 26.7% at a mean of 42 months after surgery. However, 7 of these failures were associated with a further injury. Therefore, the atraumatic failure rate was 11%. Age and size and location of the tears were not associated with a higher failure rate. Medial meniscal repairs were significantly more likely to fail than lateral meniscal repairs, with a failure rate of 36.4% and 5.6%, respectively (P < .05). Conclusion Meniscal repair and healing are possible, and most elite athletes can return to their preinjury level of activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent studies have shown that human papillomavirus (HPV) DNA can be found in circulating blood, including peripheral blood mononuclear cells (PBMCs), sera, plasma, and arterial cord blood. In light of these findings, DNA extracted from PBMCs from healthy blood donors were examined in order to determine how common HPV DNA is in blood of healthy individuals. Blood samples were collected from 180 healthy male blood donors (18-76 years old) through the Australian Red Cross Blood Services. Genomic DNA was extracted and specimens were tested for HPV DNA by PCR using a broad range primer pair. Positive samples were HPV-type determined by cloning and sequencing. HPV DNA was found in 8.3% (15/180) of the blood donors. A wide variety of different HPV types were isolated from the PBMCs; belonging to the cutaneous beta and gamma papillomavirus genera and mucosal alpha papillomaviruses. High-risk HPV types that are linked to cancer development were detected in 1.7% (3/180) of the PBMCs. Blood was also collected from a healthy HPV-positive 44-year-old male on four different occasions in order to determine which blood cell fractions harbor HPV. PBMCs treated with trypsin were negative for HPV, while non-trypsinized PBMCs were HPV-positive. This suggests that the HPV in blood is attached to the outside of blood cells via a protein-containing moiety. HPV was also isolated in the B cells, dendritic cells, NK cells, and neutrophils. To conclude, HPV present in PBMCs could represent a reservoir of virus and a potential new route of transmission.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bone generation by autogenous cell transplantation in combination with a biodegradable scaffold is one of the most promising techniques being developed in craniofacial surgery. The objective of this combined in vitro and in vivo study was to evaluate the morphology and osteogenic differentiation of bone marrow derived mesenchymal progenitor cells and calvarial osteoblasts in a two-dimensional (2-D) and three-dimensional (3-D) culture environment (Part I of this study) and their potential in combination with a biodegradable scaffold to reconstruct critical-size calvarial defects in an autologous animal model [Part II of this study; see Schantz, J.T., et al. Tissue Eng. 2003;9(Suppl. 1):S-127-S-139; this issue]. New Zealand White rabbits were used to isolate osteoblasts from calvarial bone chips and bone marrow stromal cells from iliac crest bone marrow aspirates. Multilineage differentiation potential was evaluated in a 2-D culture setting. After amplification, the cells were seeded within a fibrin matrix into a 3-D polycaprolactone (PCL) scaffold system. The constructs were cultured for up to 3 weeks in vitro and assayed for cell attachment and proliferation using phase-contrast light, confocal laser, and scanning electron microscopy and the MTS cell metabolic assay. Osteogenic differentiation was analyzed by determining the expression of alkaline phosphatase (ALP) and osteocalcin. The bone marrow-derived progenitor cells demonstrated the potential to be induced to the osteogenic, adipogenic, and chondrogenic pathways. In a 3-D environment, cell-seeded PCL scaffolds evaluated by confocal laser microscopy revealed continuous cell proliferation and homogeneous cell distribution within the PCL scaffolds. On osteogenic induction mesenchymal progenitor cells (12 U/L) produce significantly higher (p < 0.05) ALP activity than do osteoblasts (2 U/L); however, no significant differences were found in osteocalcin expression. In conclusion, this study showed that the combination of a mechanically stable synthetic framework (PCL scaffolds) and a biomimetic hydrogel (fibrin glue) provides a potential matrix for bone tissue-engineering applications. Comparison of osteogenic differentiation between the two mesenchymal cell sources revealed a similar pattern.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Defining the precise promoter DNA sequence motifs where nuclear receptors and other transcription factors bind is an essential prerequisite for understanding how these proteins modulate the expression of their specific target genes. The purpose of this chapter is to provide the reader with a detailed guide with respect to the materials and the key methods required to perform this type of DNA-binding analysis. Irrespective of whether starting with purified DNA-binding proteins or somewhat crude cellular extracts, the tried-and-true procedures described here will enable one to accurately access the capacity of specific proteins to bind to DNA as well as to determine the exact sequences and DNA contact nucleotides involved. For illustrative purposes, we primarily have used the interaction of the androgen receptor with the rat probasin proximal promoter as our model system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The treatment of challenging fractures and large osseous defects presents a formidable problem for orthopaedic surgeons. Tissue engineering/regenerative medicine approaches seek to solve this problem by delivering osteogenic signals within scaffolding biomaterials. In this study, we introduce a hybrid growth factor delivery system that consists of an electrospun nanofiber mesh tube for guiding bone regeneration combined with peptide-modified alginate hydrogel injected inside the tube for sustained growth factor release. We tested the ability of this system to deliver recombinant bone morphogenetic protein-2 (rhBMP-2) for the repair of critically-sized segmental bone defects in a rat model. Longitudinal [mu]-CT analysis and torsional testing provided quantitative assessment of bone regeneration. Our results indicate that the hybrid delivery system resulted in consistent bony bridging of the challenging bone defects. However, in the absence of rhBMP-2, the use of nanofiber mesh tube and alginate did not result in substantial bone formation. Perforations in the nanofiber mesh accelerated the rhBMP-2 mediated bone repair, and resulted in functional restoration of the regenerated bone. [mu]-CT based angiography indicated that perforations did not significantly affect the revascularization of defects, suggesting that some other interaction with the tissue surrounding the defect such as improved infiltration of osteoprogenitor cells contributed to the observed differences in repair. Overall, our results indicate that the hybrid alginate/nanofiber mesh system is a promising growth factor delivery strategy for the repair of challenging bone injuries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

People suffering from pain due to osteoarthritic or rheumatoidal changes in the joints are still waiting for a better treatment. Although some studies have achieved success in repairing small cartilage defects, there is no widely accepted method for complete repair of osteochondral defects. Also joint replacements have not yet succeeded in replacing of natural cartilage without complications. Therefore, there is room for a new medical approach, which outperforms currently used methods. The aim of this study is to show potential of using a tissue engineering approach for regeneration of osteochondral defects. The critical review of currently used methods for treatment of osteochondral defects is also provided. In this study, two kinds of hybrid scaffolds developed in Hutmacher's group have been analysed. The first biphasic scaffold consists of fibrin and PCL. The fibrin serves as a cartilage phase while the porous PCL scaffold acts as the subchondral phase. The second system comprises of PCL and PCL-TCP. The scaffolds were fabricated via fused deposition modeling which is a rapid prototyping system. Bone marrow-derived mesenchymal cells were isolated from New Zealand White rabbits, cultured in vitro and seeded into the scaffolds. Bone regenerations of the subchondral phases were quantified via micro CT analysis and the results demonstrated the potential of the porous PCL and PCL-TCP scaffolds in promoting bone healing. Fibrin was found to be lacking in this aspect as it degrades rapidly. On the other hand, the porous PCL scaffold degrades slowly hence it provides an effective mechanical support. This study shows that in the field of cartilage repair or replacement, tissue engineering may have big impact in the future. In vivo bone and cartilage engineering via combining a novel composite, biphasic scaffold technology with a MSC has been shown a high potential in the knee defect regeneration in the animal models. However, the clinical application of tissue engineering requires the future research work due to several problems, such as scaffold design, cellular delivery and implantation strategies.