125 resultados para Vapor sample
Resumo:
Graphitization, a common process involving the transformation of metastable nongraphitic carbon into graphite is one of the major present-day challenges for micro- and nanocarbons due to their unique structural character and highly unusual thermal activation. Here we report on the successful graphitization of nanocrystalline carbon microcoils prepared by catalytic chemical vapor deposition and post-treated in argon atmosphere at temperatures ∼2500 °C for 2 h. The morphology, microstructure, and thermal properties of the carbon microcoils are examined in detail. The graphitization mechanism is discussed by invoking a model of structural transformation of the carbon microcoils. The results reveal that after graphitization the carbon microcoils are prominently purified and feature a clear helical morphology, as well as a more regular and ordered microstructure. The interlayer spacing of the carbon microcoils decreases from 0.36 to 0.34 nm, whereas the mean crystal sizes in the c - and a -directions increase from 1.64 to 2.04 nm and from 3.86 to 7.21 nm, respectively. Thermal treatment also substantially improves the antioxidation properties of the microcoils by lifting the oxidation onset temperature from 550 to 672 °C. This process may be suitable for other nongraphitic micro- and nanomaterials.
Resumo:
A theoretical model to describe the plasma-assisted growth of carbon nanofibers (CNFs) is proposed. Using the model, the plasma-related effects on the nanofiber growth parameters, such as the growth rate due to surface and bulk diffusion, the effective carbon flux to the catalyst surface, the characteristic residence time and diffusion length of carbon atoms on the catalyst surface, and the surface coverages, have been studied. The dependence of these parameters on the catalyst surface temperature and ion and etching gas fluxes to the catalyst surface is quantified. The optimum conditions under which a low-temperature plasma environment can benefit the CNF growth are formulated. These results are in good agreement with the available experimental data on CNF growth and can be used for optimizing synthesis of related nanoassemblies in low-temperature plasma-assisted nanofabrication. © 2008 American Institute of Physics.
Resumo:
Nanocrystalline silicon carbide (nc-SiC) films are prepared by low-frequency inductively coupled plasma chemical vapor deposition from feedstock gases silane and methane diluted with hydrogen at a substrate temperature of 500 °C. The effect of different hydrogen dilution ratios X [hydrogen flow (sccm) / silane + methane flow (sccm)] on the growth of nc-SiC films is investigated by X-ray diffraction, scanning electron microscopy, Fourier transform infrared (FTIR) spectroscopy, and X-ray photoelectron spectroscopy (XPS). At a low hydrogen dilution ratio X, cubic silicon carbide is the main crystal phase; whereas at a high hydrogen dilution ratio X, hexagonal silicon carbide is the main crystal phase. The SiC crystal phase transformation may be explained by the different surface mobility of reactive Si-based and C-based radicals deposited at different hydrogen dilution ratios X. The FTIR and XPS analyses show that the Si-C bonds are the main bonds in the films and elemental composition of SiC is nearly stoichiometric with almost equal share of silicon and carbon atoms.
Resumo:
An empirical review of the operation of Part 5.3A of the Corporations Act 2001 (Cth) is timely given that Australia’s corporate rescue regime marked its 20 year anniversary in 2013. The research project culminating in this report was funded by the 2013 ARITA Terry Taylor Scholarship and entailed a review of a random sample of 72 executed DOCAs (and associated reports and returns) which were effectuated between 1 August 2012 and 31 July 2013. This sample review of DOCAs was undertaken with the intention of producing a ‘snapshot’ of current practices and trends pertaining to DOCAs – ie, average (or typical) rate of dividends paid, the outcomes or goals which DOCAs customarily achieve (eg, genuine company rescues, workouts, enhanced asset realisations or ‘quasi-liquidations’), the profile of the companies executing DOCAs and the average term/duration of DOCAs. The purpose and value of this sample review was to empirically assess the use and effectiveness of one important aspect of Part 5.3A and to further inform consideration and debate as to whether changes are warranted to Australia’s voluntary administration regime.
Resumo:
The results of 1D simulation of nanoparticle dynamics in the areas adjacent to nanostructured carbon-based films exposed to chemically active complex plasma of CH4 + H2 + Ar gas mixtures are presented. The nanoparticle-loaded near-substrate (including sheath and presheath) areas of a low-frequency (0.5 MHz) inductively coupled plasma facility for the PECVD growth of the ordered carbon-based nanotip structures are considered. The conditions allowing one to predict the size of particles that can pass through the plasma sheath and softly land onto the surface are formulated. The possibility of soft nano-cluster deposition without any additional acceleration common for some existing nano-cluster deposition schemes is demonstrated. The effect of the substrate heating power and the average atomic mass of neutral species is studied numerically and verified experimentally.
Resumo:
This paper reports on the efficient deposition of hydrogenated diamond-like carbon (DLC) film in a plasma reactor that features both the capacitively and inductively coupled operation regimes. The hydrogenated DLC films have been prepared on silicon wafers using a low-frequency (500 kHz) inductively coupled plasma (ICP) chemical vapor deposition (CVD) system. At low RF powers, the system operates as an asymmetric capacitively coupled plasma source, and the film deposition process is undertaken in the electrostatic (E) discharge regime. Above the mode transition threshold, the high-density inductively coupled plasma is produced in the electromagnetic (H) discharge regime. It has been shown that the deposition rate and hardness of the DLC film are much higher in the H-mode deposition regime. For a 2.66-Pa H-mode CH4 + Ar gas mixture discharge, the deposited DLC film exhibits a mechanical hardness of 18 GPa, Young's modulus of 170 GPa, and compressive stress of 1.3 GPa.
Resumo:
Graphene has received great interest from researchers all over the world owing to its unique properties. Much of the excitement surrounding graphene is due to its remarkable properties and inherent quantum effects. These effects and properties make it a desirable material for the fabrication of new devices. Graphene has a plethora of potential uses including gas and molecular sensors, electronics, spintronics and optics [1-7]. Interestingly, some of these properties have been known about since before the material was even isolated due to a considerable amount of theoretical work and simulations. The material was to some extent a condensed matter modelers "toy" as it was used as a benchmark 2D material Graphene had been used for a long time as the fundamental building block of many other carbon structures...
Resumo:
We present a theoretical model describing a plasma-assisted growth of carbon nanofibers (CNFs), which involves two competing channels of carbon incorporation into stacked graphene sheets: via surface diffusion and through the bulk of the catalyst particle (on the top of the nanofiber), accounting for a range of ion- and radical-assisted processes on the catalyst surface. Using this model, it is found that at low surface temperatures, Ts, the CNF growth is indeed controlled by surface diffusion, thus quantifying the semiempirical conclusions of earlier experiments. On the other hand, both the surface and bulk diffusion channels provide a comparable supply of carbon atoms to the stacked graphene sheets at elevated synthesis temperatures. It is also shown that at low Ts, insufficient for effective catalytic precursor decomposition, the plasma ions play a key role in the production of carbon atoms on the catalyst surface. The model is used to compute the growth rates for the two extreme cases of thermal and plasma-enhanced chemical vapor deposition of CNFs. More importantly, these results quantify and explain a number of observations and semiempirical conclusions of earlier experiments.
Resumo:
The effects of acid treatment, vapor grown carbon fiber (VGCF) interlayer and the angle, i.e., 0° and 90°, between the rolling stripes of an aluminum (Al) plate and the fiber direction of glass fiber reinforced plastics (GFRP) on the mode II interlaminar mechanical properties of GFRP/Al laminates were investigated. The experimental results of an end notched flexure test demonstrate that the acid treatment and the proper addition of VGCF can effectively improve the critical load and mode II fracture toughness of GFRP/Al laminates. The specimens with acid treatment and 10 g m−2 VGCF addition possess the highest mode II fracture toughness, i.e., 269% and 385% increases in the 0° and 90° specimens, respectively compared to those corresponding pristine ones. Due to the induced anisotropy by the rolling stripes on the aluminum plate, the 90° specimens possess 15.3%–73.6% higher mode II fracture toughness compared to the 0° specimens. The improvement mechanisms were explored by the observation of crack propagation path and fracture surface with optical, laser scanning and scanning electron microscopies. Moreover, finite element analyses were carried out based on the cohesive zone model to verify the experimental fracture toughness and to predict the interface shear strength between the aluminum plates and GFRP laminates.
Resumo:
Background Prescription medicine samples provided by pharmaceutical companies are predominantly newer and more expensive products. The range of samples provided to practices may not represent the drugs that the doctors desire to have available. Few studies have used a qualitative design to explore the reasons behind sample use. Objective The aim of this study was to explore the opinions of a variety of Australian key informants about prescription medicine samples, using a qualitative methodology. Methods Twenty-three organizations involved in quality use of medicines in Australia were identified, based on the authors' previous knowledge. Each organization was invited to nominate 1 or 2 representatives to participate in semistructured interviews utilizing seeding questions. Each interview was recorded and transcribed verbatim. Leximancer v2.25 text analysis software (Leximancer Pty Ltd., Jindalee, Queensland, Australia) was used for textual analysis. The top 10 concepts from each analysis group were interrogated back to the original transcript text to determine the main emergent opinions. Results A total of 18 key interviewees representing 16 organizations participated. Samples, patient, doctor, and medicines were the major concepts among general opinions about samples. The concept drug became more frequent and the concept companies appeared when marketing issues were discussed. The Australian Pharmaceutical Benefits Scheme and cost were more prevalent in discussions about alternative sample distribution models, indicating interviewees were cognizant of budgetary implications. Key interviewee opinions added richness to the single-word concepts extracted by Leximancer. Conclusions Participants recognized that prescription medicine samples have an influence on quality use of medicines and play a role in the marketing of medicines. They also believed that alternative distribution systems for samples could provide benefits. The cost of a noncommercial system for distributing samples or starter packs was a concern. These data will be used to design further research investigating alternative models for distribution of samples.
Resumo:
Prescription medicine samples (or starter packs) are provided by pharmaceutical manufacturers to prescribing doctors as one component in the suite of marketing products used to convince them to prescribe a particular medicine [1,2]. Samples are generally newer, more expensive treatment options still covered by patent [3,4]. Safe, effective, judicious and appropriate medicine use (quality use of medicines) [5] could be enhanced by involving community pharmacists in the dispensing of starter packs. Doctors who use samples show a trend towards prescribing more expensive medicines overall [6] and also prescribe more medicines [7]. Cardiovascular health and mental health are Australian National Health Priority Areas [8] and account for approximately 30% and 17%, respectively, of annual government Pharmaceutical Benefits System (PBS) in 2006 [9]. The PBS is Australia's universal prescription subsidy scheme [9]. Antihypertensives were a major contributor to the estimated 80 000 medicine-related hospital admissions in Australia in 1999 [10] and also internationally [11,12]. The aim of this study was to pilot an alternative model for supply of free sample or starter packs of prescription medicines and ascertain if it is a viable model in daily practice.