273 resultados para Segmental blocks


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes Electronic Blocks, a new robot construction element designed to allow children as young as age three to build and program robotic structures. The Electronic Blocks encapsulate input, output and logic concepts in tangible elements that young children can use to create a wide variety of physical agents. The children are able to determine the behavior of these agents by the choice of blocks and the manner in which they are connected. The Electronic Blocks allow children without any knowledge of mechanical design or computer programming to create and control physically embodied robots. They facilitate the development of technological capability by enabling children to design, construct, explore and evaluate dynamic robotics systems. A study of four and five year-old children using the Electronic Blocks has demonstrated that the interface is well suited to young children. The complexity of the implementation is hidden from the children, leaving the children free to autonomously explore the functionality of the blocks. As a consequence, children are free to move their focus beyond the technology. Instead they are free to focus on the construction process, and to work on goals related to the creation of robotic behaviors and interactions. As a resource for robot building, the blocks have proved to be effective in encouraging children to create robot structures, allowing children to design and program robot behaviors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aim: This paper is a report of a study of variations in the pattern of nurse practitioner work in a range of service fields and geographical locations, across direct patient care, indirect patient care and service-related activities. Background. The nurse practitioner role has been implemented internationally as a service reform model to improve the access and timeliness of health care. There is a substantial body of research into the nurse practitioner role and service outcomes, but scant information on the pattern of nurse practitioner work and how this is influenced by different service models. --------- Methods: We used work sampling methods. Data were collected between July 2008 and January 2009. Observations were recorded from a random sample of 30 nurse practitioners at 10-minute intervals in 2-hour blocks randomly generated to cover two weeks of work time from a sampling frame of six weeks. --------- Results: A total of 12,189 individual observations were conducted with nurse practitioners across Australia. Thirty individual activities were identified as describing nurse practitioner work, and these were distributed across three categories. Direct care accounted for 36.1% of how nurse practitioners spend their time, indirect care accounted for 32.2% and service-related activities made up 31.9%. --------- Conclusion. These findings provide useful baseline data for evaluation of nurse practitioner positions and the service effect of these positions. However, the study also raises questions about the best use of nurse practitioner time and the influences of barriers to and facilitators of this model of service innovation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: The two-stage Total Laparoscopic Hysterectomy (TLH) versus Total Abdominal Hysterectomy (TAH) for stage I endometrial cancer (LACE) randomised controlled trial was initiated in 2005. The primary objective of stage 1 was to assess whether TLH results in equivalent or improved QoL up to 6 months after surgery compared to TAH. The primary objective of stage 2 was to test the hypothesis that disease-free survival at 4.5 years is equivalent for TLH and TAH. Results addressing the primary objective of stage 1 of the LACE trial are presented here. Methods: The first 361 LACE participants (TAH n= 142, TLH n=190) were enrolled in the QoL substudy at 19 centres across Australia, New Zealand and Hong Kong, and 332 completed the QoL analysis. Randomisation was performed centrally and independently from other study procedures via a computer generated, web-based system (providing concealment of the next assigned treatment) using stratified permuted blocks of 3 and 6, and assigned patients with histologically confirmed stage 1 endometrioid endometrial adenocarcinoma and ECOG performance status <2 to TLH or TAH stratified by histological grade and study centre. No blinding of patients or study personnel was attempted. QoL was measured at baseline, 1 and 4 weeks (early), and 3 and 6 months (late) after surgery using the Functional Assessment of Cancer Therapy-General (FACT-G) questionnaire. The primary endpoint was the difference between the groups in QoL change from baseline at early and late time points (a 5% difference was considered clinically significant). Analysis was performed according to the intention-to-treat principle using generalized estimating equations on differences from baseline for the early and late QoL recovery. The LACE trial is registered with clinicaltrials.gov (NCT00096408) and the Australian New Zealand Clinical Trials Registry (CTRN12606000261516). Patients for both stages of the trial have now been recruited and are being followed up for disease-specific outcomes. Findings: The proportion of missing values at the 5%, 10% 15% and 20% differences in the FACT-G scale was 6% (12/190) in the TLH and 14% (20/142) in the TAH group. There were 8/332 conversions (2.4%, 7 of which were from TLH to TAH). In the early phase of recovery, patients undergoing TLH reported significantly greater improvement of QoL from baseline compared to TAH in all subscales except the emotional and social well-being subscales. Improvements in QoL up to 6 months post-surgery continued to favour TLH except for the emotional and social well-being of the FACT and the visual analogue scale of the EuroQoL five dimensions (EuroQoL-VAS). Length of operating time was significantly longer in the TLH group (138±43 mins), than in the TAH group at (109±34 mins; p=0.001). While the proportion of intraoperative adverse events was similar between the treatment groups (TAH 8/142, 5.6%; TLH 14/190, 7.4%; p=0.55), postoperatively, twice as many patients in the TAH group experienced adverse events of CTC grade 3+ than in the TLH group (33/142, 23.2% and 22/190, 11.6%, respectively; p=0.004). Postoperative serious adverse events occurred more frequently in patients who had a TAH (27/142, 19.0%) than a TLH (15/190, 7.9%) (p=0.002). Interpretation: QoL improvements from baseline during early and later phases of recovery, and the adverse event profile significantly favour TLH compared to TAH for patients treated for Stage I endometrial cancer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The treatment of challenging fractures and large osseous defects presents a formidable problem for orthopaedic surgeons. Tissue engineering/regenerative medicine approaches seek to solve this problem by delivering osteogenic signals within scaffolding biomaterials. In this study, we introduce a hybrid growth factor delivery system that consists of an electrospun nanofiber mesh tube for guiding bone regeneration combined with peptide-modified alginate hydrogel injected inside the tube for sustained growth factor release. We tested the ability of this system to deliver recombinant bone morphogenetic protein-2 (rhBMP-2) for the repair of critically-sized segmental bone defects in a rat model. Longitudinal [mu]-CT analysis and torsional testing provided quantitative assessment of bone regeneration. Our results indicate that the hybrid delivery system resulted in consistent bony bridging of the challenging bone defects. However, in the absence of rhBMP-2, the use of nanofiber mesh tube and alginate did not result in substantial bone formation. Perforations in the nanofiber mesh accelerated the rhBMP-2 mediated bone repair, and resulted in functional restoration of the regenerated bone. [mu]-CT based angiography indicated that perforations did not significantly affect the revascularization of defects, suggesting that some other interaction with the tissue surrounding the defect such as improved infiltration of osteoprogenitor cells contributed to the observed differences in repair. Overall, our results indicate that the hybrid alginate/nanofiber mesh system is a promising growth factor delivery strategy for the repair of challenging bone injuries.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper introduces an event-based traffic model for railway systems adopting fixed-block signalling schemes. In this model, the events of trains' arrival at and departure from signalling blocks constitute the states of the traffic flow. A state transition is equivalent to the progress of the trains by one signalling block and it is realised by referring to past and present states, as well as a number of pre-calculated look-up tables of run-times in the signalling block under various signalling conditions. Simulation results are compared with those from a time-based multi-train simulator to study the improvement of processing time and accuracy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this world of continuous change, there’s probably one certainty: more change lies ahead. Our students will encounter challenges and opportunities that we can’t even imagine. How do we prepare our students as future citizens for the challenges of the 21st century? One of the most influential public intellectuals of our time, Howard Gardner, suggests that in the future individuals will depend to a great extent on the capacity to synthesise large amounts of information. ‘They will need to be able to gather together information from disparate sources and put it together in ways that work for themselves and can be communicated to other persons’(Gardner 2008, p. xiii). One of the first steps in ‘putting things together’ so they ‘work’ in the mind is ‘to group objects and events together on the basis of some similarity between them’ (Lee & das Gupta 1995, p. 116). When we do this and give them a collective name, we are conceptualising. Apart from helping to save our sanity by simplifying the vast amounts of data we encounter every day, concepts help us to understand and gain meaning from what we experience. Concepts are essential for synthesising information and they also help us to communicate with others. Put simply, concepts serve as building blocks for knowledge, understanding and communication. This chapter addresses the importance of teaching and learning about concepts and conceptual development in studies of society and environment. It proceeds as follows: first, it considers how individuals use concepts, and, second, it explores the characteristics of concepts; the third section presents a discussion of approaches that might be adopted by teachers intending to help their students build concepts in the classroom.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The human knee acts as a sophisticated shock absorber during landing movements. The ability of the knee to perform this function in the real world is remarkable given that the context of the landing movement may vary widely between performances. For this reason, humans must be capable of rapidly adjusting the mechanical properties of the knee under impact load in order to satisfy many competing demands. However, the processes involved in regulating these properties in response to changing constraints remain poorly understood. In particular, the effects of muscle fatigue on knee function during step landing are yet to be fully explored. Fatigue of the knee muscles is significant for 2 reasons. First, it is thought to have detrimental effects on the ability of the knee to act as a shock absorber and is considered a risk factor for knee injury. Second, fatigue of knee muscles provides a unique opportunity to examine the mechanisms by which healthy individuals alter knee function. A review of the literature revealed that the effect of fatigue on knee function during landing has been assessed by comparing pre and postfatigue measurements, with fatigue induced by a voluntary exercise protocol. The information is limited by inconsistent results with key measures, such as knee stiffness, showing varying results following fatigue, including increased stiffness, decreased stiffness or failure to detect any change in some experiments. Further consideration of the literature questions the validity of the models used to induce and measure fatigue, as well as the pre-post study design, which may explain the lack of consensus in the results. These limitations cast doubt on the usefulness of the available information and identify a need to investigate alternative approaches. Based on the results of this review, the aims of this thesis were to: • evaluate the methodological procedures used in validation of a fatigue model • investigate the adaptation and regulation of post-impact knee mechanics during repeated step landings • use this new information to test the effects of fatigue on knee function during a step-landing task. To address the aims of the thesis, 3 related experiments were conducted that collected kinetic, kinematic and electromyographic data from 3 separate samples of healthy male participants. The methodologies involved optoelectronic motion capture (VICON), isokinetic dynamometry (System3 Pro, BIODEX) and wireless surface electromyography (Zerowire, Aurion, Italy). Fatigue indicators and knee function measures used in each experiment were derived from the data. Study 1 compared the validity and reliability of repetitive stepping and isokinetic contractions with respect to fatigue of the quadriceps and hamstrings. Fifteen participants performed 50 repetitions of each exercise twice in randomised order, over 4 sessions. Sessions were separated by a minimum of 1 week’s rest, to ensure full recovery. Validity and reliability depended on a complex interaction between the exercise protocol, the fatigue indicator, the individual and the muscle of interest. Nevertheless, differences between exercise protocols indicated that stepping was less effective in eliciting valid and reliable changes in peak power and spectral compression, compared with isokinetic exercise. A key finding was that fatigue progressed in a biphasic pattern during both exercises. The point separating the 2 phases, known as the transition point, demonstrated superior between-test reliability during the isokinetic protocol, compared with stepping. However, a correction factor should be used to accurately apply this technique to the study of fatigue during landing. Study 2 examined alterations in knee function during repeated landings, with a different sample (N =12) performing 60 consecutive step landing trials. Each landing trial was separated by 1-minute rest periods. The results provided new information in relation to the pre-post study design in the context of detecting adjustments in knee function during landing. First, participants significantly increased or decreased pre-impact muscle activity or post-impact mechanics despite environmental and task constraints remaining unchanged. This is the 1st study to demonstrate this effect in healthy individuals without external feedback on performance. Second, single-subject analysis was more effective in detecting alterations in knee function compared to group-level analysis. Finally, repeated landing trials did not reduce inter-trial variability of knee function in some participants, contrary to assumptions underpinning previous studies. The results of studies 1 and 2 were used to modify the design of Study 3 relative to previous research. These alterations included a modified isokinetic fatigue protocol, multiple pre-fatigue measurements and singlesubject analysis to detect fatigue-related changes in knee function. The study design incorporated new analytical approaches to investigate fatiguerelated alterations in knee function during landing. Participants (N = 16) were measured during multiple pre-fatigue baseline trial blocks prior to the fatigue model. A final block of landing trials was recorded once the participant met the operational fatigue definition that was identified in Study 1. The analysis revealed that the effects of fatigue in this context are heavily dependent on the compensatory response of the individual. A continuum of responses was observed within the sample for each knee function measure. Overall, preimpact preparation and post-impact mechanics of the knee were altered with highly individualised patterns. Moreover, participants used a range of active or passive pre-impact strategies to adapt post-impact mechanics in response to quadriceps fatigue. The unique patterns identified in the data represented an optimisation of knee function based on priorities of the individual. The findings of these studies explain the lack of consensus within the literature regarding the effects of fatigue on knee function during landing. First, functional fatigue protocols lack validity in inducing fatigue-related changes in mechanical output and spectral compression of surface electromyography (sEMG) signals, compared with isokinetic exercise. Second, fatigue-related changes in knee function during landing are confounded by inter-individual variation, which limits the sensitivity of group-level analysis. By addressing these limitations, the 3rd study demonstrated the efficacies of new experimental and analytical approaches to observe fatigue-related alterations in knee function during landing. Consequently, this thesis provides new perspectives into the effects of fatigue in knee function during landing. In conclusion: • The effects of fatigue on knee function during landing depend on the response of the individual, with considerable variation present between study participants, despite similar physical characteristics. • In healthy males, adaptation of pre-impact muscle activity and postimpact knee mechanics is unique to the individual and reflects their own optimisation of demands such as energy expenditure, joint stability, sensory information and loading of knee structures. • The results of these studies should guide future exploration of adaptations in knee function to fatigue. However, research in this area should continue with reduced emphasis on the directional response of the population and a greater focus on individual adaptations of knee function.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thin bed technology for clay/ concrete masonry is gaining popularity in many parts of the developed economy in recent times through active engagement of the industry with the academia. One of the main drivers for the development of thin bed technology is the progressive contraction of the professional brick and block laying workforce as the younger generation is not attracted towards this profession due to the general perception of the society towards manual work as being outdated in the modern digital economy. This situation has led to soaring cost of skilled labour associated with the general delay in completion of construction activities in recent times. In parallel, the advent of manufacturing technologies in producing bricks and blocks with adherence to specified dimensions and shapes and several rapid setting binders are other factors that have contributed to the development of thin bed technology. Although this technology is still emerging, especially for applications to earthquake prone regions, field applications are reported in Germany for over a few decades and in Italy since early 2000. The Australian concrete masonry industry has recently taken keen interest in pursuing research with a view to developing this technology. This paper presents the background information including review of literature and pilot studies that have been carried out to enable planning of the development of thin bed technology. The paper concludes with recommendations for future research.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Large igneous provinces (LIPs) are sites of the most frequently recurring, largest volume basaltic and silicic eruptions in Earth history. These large-volume (N1000 km3 dense rock equivalent) and large-magnitude (NM8) eruptions produce areally extensive (104–105 km2) basaltic lava flow fields and silicic ignimbrites that are the main building blocks of LIPs. Available information on the largest eruptive units are primarily from the Columbia River and Deccan provinces for the dimensions of flood basalt eruptions, and the Paraná–Etendeka and Afro-Arabian provinces for the silicic ignimbrite eruptions. In addition, three large-volume (675– 2000 km3) silicic lava flows have also been mapped out in the Proterozoic Gawler Range province (Australia), an interpreted LIP remnant. Magma volumes of N1000 km3 have also been emplaced as high-level basaltic and rhyolitic sills in LIPs. The data sets indicate comparable eruption magnitudes between the basaltic and silicic eruptions, but due to considerable volumes residing as co-ignimbrite ash deposits, the current volume constraints for the silicic ignimbrite eruptions may be considerably underestimated. Magma composition thus appears to be no barrier to the volume of magma emitted during an individual eruption. Despite this general similarity in magnitude, flood basaltic and silicic eruptions are very different in terms of eruption style, duration, intensity, vent configuration, and emplacement style. Flood basaltic eruptions are dominantly effusive and Hawaiian–Strombolian in style, with magma discharge rates of ~106–108 kg s−1 and eruption durations estimated at years to tens of years that emplace dominantly compound pahoehoe lava flow fields. Effusive and fissural eruptions have also emplaced some large-volume silicic lavas, but discharge rates are unknown, and may be up to an order of magnitude greater than those of flood basalt lava eruptions for emplacement to be on realistic time scales (b10 years). Most silicic eruptions, however, are moderately to highly explosive, producing co-current pyroclastic fountains (rarely Plinian) with discharge rates of 109– 1011 kg s−1 that emplace welded to rheomorphic ignimbrites. At present, durations for the large-magnitude silicic eruptions are unconstrained; at discharge rates of 109 kg s−1, equivalent to the peak of the 1991 Mt Pinatubo eruption, the largest silicic eruptions would take many months to evacuate N5000 km3 of magma. The generally simple deposit structure is more suggestive of short-duration (hours to days) and high intensity (~1011 kg s−1) eruptions, perhaps with hiatuses in some cases. These extreme discharge rates would be facilitated by multiple point, fissure and/or ring fracture venting of magma. Eruption frequencies are much elevated for large-magnitude eruptions of both magma types during LIP-forming episodes. However, in basaltdominated provinces (continental and ocean basin flood basalt provinces, oceanic plateaus, volcanic rifted margins), large magnitude (NM8) basaltic eruptions have much shorter recurrence intervals of 103–104 years, whereas similar magnitude silicic eruptions may have recurrence intervals of up to 105 years. The Paraná– Etendeka province was the site of at least nine NM8 silicic eruptions over an ~1 Myr period at ~132 Ma; a similar eruption frequency, although with a fewer number of silicic eruptions is also observed for the Afro- Arabian Province. The huge volumes of basaltic and silicic magma erupted in quick succession during LIP events raises several unresolved issues in terms of locus of magma generation and storage (if any) in the crust prior to eruption, and paths and rates of ascent from magma reservoirs to the surface.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The public transport corridor bordering the study site runs NW to SE and is perceived as a source of noise and pollution. The key urban planning strategies adopted by this team were: • Acoustic separation from transport corridor noise source, • A regular grid pattern of urban blocks, and • A clear hierarchy of accessible open space throughout the development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bone healing is known to occur through the successive formation and resorption of various tissues with different structural and mechanical properties. To get a better insight into this sequence of events, we used environmental scanning electron microscopy (ESEM) together with scanning small-angle X-ray scattering (sSAXS) to reveal the size and orientation of bone mineral particles within the regenerating callus tissues at different healing stages (2, 3, 6, and 9 weeks). Sections of 200 µm were cut from embedded blocks of midshaft tibial samples in a sheep osteotomy model with an external fixator. Regions of interest on the medial side of the proximal fragment were chosen to be the periosteal callus, middle callus, intercortical callus, and cortex. Mean thickness (T parameter), degree of alignment (ρ parameter), and predominant orientation (ψ parameter) of mineral particles were deduced from resulting sSAXS patterns with a spatial resolution of 200 µm. 2D maps of T and ρ overlapping with ESEM images revealed that the callus formation occurred in two waves of bone formation, whereby a highly disordered mineralized tissue was deposited first, followed by a bony tissue with more lamellar appearance in the ESEM and where the mineral particles were more aligned, as revealed by sSAXS. As a consequence, degree of alignment and mineral particle size within the callus increased with healing time, whereas at any given moment there were structural gradients, for example, from periosteal toward the middle callus.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

After bone fracture, various cellular activities lead to the formation of different tissue types, which form the basis for the process of secondary bone healing. Although these tissues have been quantified by histology, their material properties are not well understood. Thus, the aim of this study is to correlate the spatial and temporal variations in the mineral content and the nanoindentation modulus of the callus formed via intramembranous ossification over the course of bone healing. Midshaft tibial samples from a sheep osteotomy model at time points of 2, 3, 6 and 9 weeks were employed. PMMA embedded blocks were used for quantitative back scattered electron imaging and nanoindentation of the newly formed periosteal callus near the cortex. The resulting indentation modulus maps show the heterogeneity in the modulus in the selected regions of the callus. The indentation modulus of the embedded callus is about 6 GPa at the early stage. At later stages of mineralization, the average indentation modulus reaches 14 GPa. There is a slight decrease in average indentation modulus in regions distant to the cortex, probably due to remodelling of the peripheral callus. The spatial and temporal distribution of mineral content in the callus tissue also illustrates the ongoing remodelling process observed from histological analysis. Most interestingly the average indentation modulus, even at 9 weeks, remains as low as 13 GPa, which is roughly 60% of that for cortical sheep bone. The decreased indentation modulus in the callus compared to cortex is due to the lower average mineral content and may be perhaps also due to the properties of the organic matrix which might be different from normal bone.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tangible programming elements offer the dynamic and programmable properties of a computer without the complexity introduced by the keyboard, mouse and screen. This paper explores the extent to which programming skills are used by children during interactions with a set of tangible programming elements: the Electronic Blocks. An evaluation of the Electronic Blocks indicates that children become heavily engaged with the blocks, and learn simple programming with a minimum of adult support.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electronic Blocks are a new programming environment, designed specifically for children aged between three and eight years. As such, the design of the Electronic Block environment is firmly based on principles of developmentally appropriate practices in early childhood education. The Electronic Blocks are physical, stackable blocks that include sensor blocks, action blocks and logic blocks. Evaluation of the Electronic Blocks with both preschool and primary school children shows that the blocks' ease of use and power of engagement have created a compelling tool for the introduction of meaningful technology education in an early childhood setting. The key to the effectiveness of the Electronic Blocks lies in an adherence to theories of development and learning throughout the Electronic Blocks design process.