172 resultados para Mathematics and Art
Resumo:
In this paper, we consider the variable-order nonlinear fractional diffusion equation View the MathML source where xRα(x,t) is a generalized Riesz fractional derivative of variable order View the MathML source and the nonlinear reaction term f(u,x,t) satisfies the Lipschitz condition |f(u1,x,t)-f(u2,x,t)|less-than-or-equals, slantL|u1-u2|. A new explicit finite-difference approximation is introduced. The convergence and stability of this approximation are proved. Finally, some numerical examples are provided to show that this method is computationally efficient. The proposed method and techniques are applicable to other variable-order nonlinear fractional differential equations.
Resumo:
This paper reports on the research and development of an ICT tool to facilitate the learning of ratio and fractions by adult prisoners. The design of the ICT tool was informed by a semiotic framework for mathematical meaning-making. The ICT tool thus employed multiple semiotic resources including topological, typological, and social-actional resources. The results showed that individual semiotic resource could only represent part of the mathematical concept, while at the same time it might signify something else to create a misconception. When multiple semiotic resources were utilised the mathematical ideas could be better learnt.
ADI-Euler and extrapolation methods for the two-dimensional fractional advection-dispersion equation
Resumo:
In this paper, we consider a time-space fractional diffusion equation of distributed order (TSFDEDO). The TSFDEDO is obtained from the standard advection-dispersion equation by replacing the first-order time derivative by the Caputo fractional derivative of order α∈(0,1], the first-order and second-order space derivatives by the Riesz fractional derivatives of orders β 1∈(0,1) and β 2∈(1,2], respectively. We derive the fundamental solution for the TSFDEDO with an initial condition (TSFDEDO-IC). The fundamental solution can be interpreted as a spatial probability density function evolving in time. We also investigate a discrete random walk model based on an explicit finite difference approximation for the TSFDEDO-IC.
Resumo:
This paper reports on Years 8, 9 and 10 students’ knowledge of percent problem types, use of diagrams, and type of solution strategy. Non- and semi-proficient students displayed the expected inflexible formula approach to solution but proficient students used a flexible mixture of estimation, number sense and trial and error instead of expected schema based methods.
Resumo:
Centre for Mathematics and Science Education, QUT, Brisbane, Australia This paper reports on a study in which Years 6 and 10 students were individually interviewed to determine their ability to unitise and reunitise number lines used to represent mixed numbers and improper fractions. Only 16.7% of the students (all Year 6) were successful on all three tasks and, in general, Year 6 students outperformed Year 8 students. The interviews revealed that the remaining students had incomplete, fragmented or non-existent structural knowledge of mixed numbers and improper fractions, and were unable to unitise or reunitise number lines. The implication for teaching is that instruction should focus on providing students with a variety of fraction representations in order to develop rich and flexible schema for all fraction types (mixed numbers, and proper and improper fractions).
Resumo:
This inaugural book in the new series Advances in Mathematics Education is the most up to date, comprehensive and avant garde treatment of Theories of Mathematics Education which use two highly acclaimed ZDM special issues on theories of mathematics education (issue 6/2005 and issue 1/2006), as a point of departure. Historically grounded in the Theories of Mathematics Education (TME group) revived by the book editors at the 29th Annual PME meeting in Melbourne and using the unique style of preface-chapter-commentary, this volume consist of contributions from leading thinkers in mathematics education who have worked on theory building. This book is as much summative and synthetic as well as forward-looking by highlighting theories from psychology, philosophy and social sciences that continue to influence theory building. In addition a significant portion of the book includes newer developments in areas within mathematics education such as complexity theory, neurosciences, modeling, critical theory, feminist theory, social justice theory and networking theories. The 19 parts, 17 prefaces and 23 commentaries synergize the efforts of over 50 contributing authors scattered across the globe that are active in the ongoing work on theory development in mathematics education.
Resumo:
In this chapter we tackle increasingly sensitive questions in mathematics education, those that have polarized the community into distinct schools of thought as well as impacted reform efforts.
Resumo:
This paper reports on students’ ability to decode mathematical graphics. The findings were: (a) some items showed an insignificant improvement over time; (b) success involves identifying critical perceptual elements in the graphic and incorporating these elements into a solution strategy; and (c) the optimal strategy capitalises on how information is encoded in the graphic. Implications include a need for teachers to be proactive in supporting students’ to develop their graphical knowledge and an awareness that knowledge varies substantially across students.
Resumo:
A one year mathematics project that focused on measurement was conducted with six Torres Strait Islander schools and communities. Its key focus was to contextualise the teaching and learning of measurement within the students’ culture, communities and home languages. There were six teachers and two teacher aides who participated in the project. This paper reports on the findings from the teachers’ and teacher aides’ survey questionnaire used in the first Professional Development session to identify: a) teachers’ experience of teaching in Torres Strait Islands, b) teachers’ beliefs about effective ways to teach Torres Strait Islander students, and c) contexualising measurement within Torres Strait Islander culture, Communities and home languages. A wide range of differing levels of knowledge and understanding about how to contextualise measurement to support student learning were identified and analysed. For example, an Indigenous teacher claimed that mathematics and the environment are relational, that is, they are not discrete and in isolation from one another, rather they interconnect with mathematical ideas emerging from the environment of the Torres Strait Communities.
Resumo:
This workshop focuses upon research about the qualities of community in music and of music in community facilitated by technologically supported relationships. Generative media systems present an opportunity for users to leverage computational systems to form new relationships through interactive and collaborative experiences. Generative music and art are a relatively new phenomenon that use procedural invention as a creative technique to produce music and visual media. Early systems have demonstrated the potential to provide access to collaborative ensemble experiences for users with little formal musical or artistic expertise. This workshop examines the relational affordances of these systems evidenced by selected field data drawn from the Network Jamming Project. These generative performance systems enable access to unique ensembles with very little musical knowledge or skill and offer the possibility of interactive relationships with artists and musical knowledge through collaborative performance. In this workshop we will focus on data that highlights how these simulated experiences might lead to understandings that may be of social benefit. Conference participants will be invited to jam in real time using virtual interfaces and to evaluate purposively selected video artifacts that demonstrate different kinds of interactive relationship with artists, peers, and community and that enrich the sense of expressive self. Theoretical insights about meaningful engagement drawn from the longitudinal and cross cultural experiences will underpin the discussion and practical presentation.
Resumo:
This paper reports on a mathematics education research project centred on teachers’ pedagogical practices and capacity to assess Indigenous Australian students in a culture-fair manner. The project has been funded by the Australian Research Council Linkage program and is being conducted in seven Catholic and Independent primary schools in north Queensland. Our Industry Partners are Catholic Education and the Association of Independent Schools, Queensland. The study aims to provide greater understanding about how to build more equitable assessment practices to address the issue of underperforming Aboriginal and Torres Strait Islander (ATSI) students in regional and remote Australia. The goal is to identify ways forward by attending to culture-fair assessment practice. The research is exploring the attitudes, beliefs and responses of Indigenous students to assessment in the context of mathematics learning with particular focus on teacher knowledge in these educational settings in relation to the design of assessment tasks that are authentic and engaging for these students in an accountability context. This approach highlights how teachers need to distinguish the ‘funds of knowledge’ (González, Moll, Floyd Tenery, Rivera, Rendón, Gonzales & Amanti, 2008) that Indigenous students draw on and how teachers need to be culturally responsive in their pedagogy to open up curriculum and assessment practice to allow for different ways of knowing and being
Resumo:
Over the last three years, in our Early Algebra Thinking Project, we have been studying Years 3 to 5 students’ ability to generalise in a variety of situations, namely, compensation principles in computation, the balance principle in equivalence and equations, change and inverse change rules with function machines, and pattern rules with growing patterns. In these studies, we have attempted to involve a variety of models and representations and to build students’ abilities to switch between them (in line with the theories of Dreyfus, 1991, and Duval, 1999). The results have shown the negative effect of closure on generalisation in symbolic representations, the predominance of single variance generalisation over covariant generalisation in tabular representations, and the reduced ability to readily identify commonalities and relationships in enactive and iconic representations. This chapter uses the results to explore the interrelation between generalisation and verbal and visual comprehension of context. The studies evidence the importance of understanding and communicating aspects of representational forms which allowed commonalities to be seen across or between representations. Finally the chapter explores the implications of the studies for a theory that describes a growth in integration of models and representations that leads to generalisation.