87 resultados para MOS capacitor


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper explores the possibility of connecting two Wind Turbine Generators (WTG) to the grid using a single three level inverter. In the proposed system the rectified output of one WTG is connected across the upper dc-link capacitor of a standard diode clamped three level inverter. Similarly the rectified output of the other WTG is connected across the lower capacitor. This particular combination has several advantages such as, direct connection to the grid, reduced parts count, improved reliability and high power capacity. However, the major problem in the proposed system is the imminent imbalance of dc-link voltages. Under such conditions conventional modulation methods fail to produce desired voltage and current waveforms. A detailed analysis on this issue and a novel space vector modulation method, as the solution, are proposed in this paper. To track the Maximum power point of each WTG a power sharing algorithm is proposed. Simulation results are presented to attest the efficacy of the proposed system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a new direct integration scheme for supercapacitors that are used to mitigate short term power fluctuations in wind power systems. The proposed scheme uses the popular dual inverter topology for grid connection as well as interfacing a supercapacitor bank. The dual inverter system is formed by cascading two 2-level inverters named as the “main inverter” and the “auxiliary inverter”. The main inverter is powered by the rectified output of a wind turbine coupled permanent magnet synchronous generator. The auxiliary inverter is directly connected to a super capacitor bank. This approach eliminates the need for an interfacing dc-dc converter for the supercapacitor bank and thus improves the overall efficiency. A detailed analysis on the effects of non-integer dynamically changing voltage ratio is presented. The concept of integrated boost rectifier is used to carry out the Maximum Power Point Tracking (MPPT) of the wind turbine generator. Another novel feature of this paper is the power reference adjuster which effectively manages capacitor charging and discharging at extreme conditions. Simulation results are presented to verify the efficacy of the proposed system in suppressing short term wind power fluctuations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Modulation and control of a cascade multilevel inverter, which has a high potential in future wind generation applications, are presented. The inverter is a combination of a high power, three level “bulk inverter” and a low power “conditioning inverter”. To minimize switching losses, the bulk inverter operates at a low frequency producing square wave outputs while high frequency conditioning inverter is used to suppress harmonic content produced by the bulk inverter output. This paper proposes an improved Space Vector Modulation (SVM) algorithm and a neutral point potential balancing technique for the inverter. Furthermore, a maximum power tracking controller for the Permanent Magnet Synchronous Generator (PMSG) is described in detail. The proposed SVM technique eliminates most of the computational burdens on the digital controller and renders a greater controllability under varying DC-link voltage conditions. The DC-link capacitor voltage balancing of both bulk and conditioning inverters is carried out using Redundant State Selection (RSS) method and is explained in detail. Experimental results are presented to verify the proposed modulation and control techniques.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conventional voltage driven gate drive circuits utilise a resistor to control the switching speed of power MOS-FETs. The gate resistance is adjusted to provide controlled rate of change of load current and voltage. The cascode gate drive configuration has been proposed as an alternative to the conventional resistor-fed gate drive circuit. While cascode drive is broadly understood in the literature the switching characteristics of this topology are not well documented. This paper explores, through both simulation and experimentation, the gate drive parameter space of the cascode gate drive configuration and provides a comparison to the switching characteristics of conventional gate drive.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This chapter presents the stability analysis based on bifurcation theory of the distribution static compensator (DSTATCOM) operating both in current control mode as in voltage control mode. The bifurcation analysis allows delimiting the operating zones of nonlinear power systems and hence the computation of these boundaries is of interest for practical design and planning purposes. Suitable mathematical representations of the DSTATCOM are proposed to carry out the bifurcation analyses efficiently. The stability regions in the Thevenin equivalent plane are computed for different power factors at the Point of Common Coupling (PCC). In addition, the stability regions in the control gain space are computed, and the DC capacitor and AC capacitor impact on the stability are analyzed in detail. It is shown through bifurcation analysis that the loss of stability in the DSTATCOM is in general due to the emergence of oscillatory dynamics. The observations are verified through detailed simulation studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper proposes a linear large signal state-space model for a phase controlled CLC (Capacitor Inductor Capacitor) Resonant Dual Active Bridge (RDAB). The proposed model is useful for fast simulation and for the estimation of state variables under large signal variation. The model is also useful for control design because the slow changing dynamics of the dq variables are relatively easy to control. Simulation results of the proposed model are presented and compared to the simulated circuit model to demonstrate the proposed model's accuracy. This proposed model was used for the design of a Proportional-Integral (PI) controller and it has been implemented in the circuit simulation to show the proposed models usefulness in control design.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electric distribution networks are now in the era of transition from passive to active distribution networks with the integration of energy storage devices. Optimal usage of batteries and voltage control devices along with other upgrades in network needs a distribution expansion planning (DEP) considering inter-temporal dependencies of stages. This paper presents an efficient approach for solving multi-stage distribution expansion planning problems (MSDEPP) based on a forward-backward approach considering energy storage devices such as batteries and voltage control devices such as voltage regulators and capacitors. The proposed algorithm is compared with three other techniques including full dynamic, forward fill-in, backward pull-out from the point of view of their precision and their computational efficiency. The simulation results for the IEEE 13 bus network show the proposed pseudo-dynamic forward-backward approach presents good efficiency in precision and time of optimization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Disconnector switch operation in GIS generates VFT voltages in the system. It is important, for insulation co-ordination purposes, to obtain accurate VFT V-t data for typical gap geometries found in GIS. This paper presents experimentally obtained VFT V-t data for a 180/1 lOmm co-axial gap. The VFT has a time to first peak of 35 ns and a oscillation frequency of 13,6 MHz. Due to the location of the voltage divider in a compartment adjacent to the gap, a correction factor of 1.1 is used to relate the measured breakdown voltage to that in the gap. Positive polarity VFT V-t data is presented for 1, 2, 3 and 4 bar absolute and negative polarity VFT data for 3 and 4 bar absolute. Two methods of generating the VFT's are used. The first is to power up the test transformer at power frequency. The second is to generate a switching impulse by discharging a capacitor into the primary of the test transformer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High-voltage circuit breakers are among the most important equipments for ensuring the efficient and safe operation of an electric power system. On occasion, circuit breaker operators may wish to check whether equipment is performing satisfactorily and whether controlled switching systems are producing reliable and repeatable stress control. Monitoring of voltage and current waveforms during switching using established methods will provide information about the magnitude and frequency of voltage transients as a result of re-ignitions and restrikes. However, high frequency waveform measurement requires shutdown of circuit breaker and use of specialized equipment. Two utilities, Hydro-Québec in Canada and Powerlink Queensland in Australia, have been working on the development and application of a non-intrusive, cost-effective and flexible diagnostic system for monitoring high-voltage circuit breakers for reactive switching. The proposed diagnostic approach relies on the non-intrusive assessment of key parameters such as operating times, prestrike characteristics, re-ignition and restrike detection. Transient electromagnetic emissions have been identified as a promising means to evaluate the abovementioned parameters non-intrusively. This paper describes two complimentary methods developed concurrently by Powerlink and Hydro-Québec. Also, return of experiences on the application to capacitor bank and shunt reactor switching is presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The lithium-ion exchange rate capability of various commercial graphite materials are evaluated using galvanostatic charge/discharge cycling in a half-cell configuration over a wide range of C-rates (0.1 similar to 60C). The results confirm that graphite is capable of de-intercalating stored charge at high rates, but has a poor intercalating rate capability. Decreasing the graphite coating thickness leads to a limited rate performance improvement of the electrode. Reducing the graphite particle size shows enhanced C-rate capability but with increased irreversible capacity loss (ICL). It is demonstrated that the rate of intercalation of lithium-ions into the graphite is significantly limited compared with the corresponding rate of de-intercalation at high C-rates. For the successful utilisation of commercially available conventional graphite as a negative electrode in a lithium-ion capacitor (LIC), its intercalation rate capability needs to be improved or oversized to accommodate high charge rates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of capacitors for electrical energy storage actually predates the invention of the battery. Alessandro Volta is attributed with the invention of the battery in 1800, where he first describes a battery as an assembly of plates of two different materials (such as copper and zinc) placed in an alternating stack and separated by paper soaked in brine or vinegar [1]. Accordingly, this device was referred to as Volta’s pile and formed the basis of subsequent revolutionary research and discoveries on the chemical origin of electricity. Before the advent of Volta’s pile, however, eighteenth century researchers relied on the use of Leyden jars as a source of electrical energy. Built in the mid-1700s at the University of Leyden in Holland, a Leyden jar is an early capacitor consisting of a glass jar coated inside and outside with a thin layer of silver foil [2, 3]. With the outer foil being grounded, the inner foil could be charged with an electrostatic generator, or a source of static electricity, and could produce a strong electrical discharge from a small and comparatively simple device.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper proposes a novel modulation strategy for a phase controlled Capacitor-Inductor-Capacitor (CLC) Resonant Dual Active Bridge (RDAB). The proposed modulation strategy improves the soft turn-on, Zero-Current-Switching (ZCS) and Zero-Voltage-Switching (ZVS) range of the converter while only minimally increasing the required reactive currents in the ac link. A mathematical analysis of the proposed modulation scheme is presented along with a theoretical loss comparison between several modulation strategies. The proposed modulation strategy was implemented and the experimental results are presented.