333 resultados para Hybrid simulation-optimization
Resumo:
This paper compares different state-of-the-art exploration strategies for teams of mobile robots exploring an unknown environment. The goal is to help in determining a best strategy for a given multi-robot scenario and optimization target. Experiments are done in a 2D-simulation environment with 5 robots that are equipped with a horizontal laser range finder. Required components like SLAM, path planning and obstacle avoidance of every robot are included in a full-system simulation. To evaluate different strategies the time to finish exploration, the number of measurements that have been integrated into the map and the development in size of the explored area over time are used. The results of extensive test runs on three environments with different characteristics show that simple strategies can perform fairly well in many situations but specialized strategies can improve performance with regards to their targeted evaluation measure.
Resumo:
A three-dimensional (3D) mathematical model of tumour growth at the avascular phase and vessel remodelling in host tissues is proposed with emphasis on the study of the interactions of tumour growth and hypoxic micro-environment in host tissues. The hybrid based model includes the continuum part, such as the distributions of oxygen and vascular endothelial growth factors (VEGFs), and the discrete part of tumour cells (TCs) and blood vessel networks. The simulation shows the dynamic process of avascular tumour growth from a few initial cells to an equilibrium state with varied vessel networks. After a phase of rapidly increasing numbers of the TCs, more and more host vessels collapse due to the stress caused by the growing tumour. In addition, the consumption of oxygen expands with the enlarged tumour region. The study also discusses the effects of certain factors on tumour growth, including the density and configuration of preexisting vessel networks and the blood oxygen content. The model enables us to examine the relationship between early tumour growth and hypoxic micro-environment in host tissues, which can be useful for further applications, such as tumour metastasis and the initialization of tumour angiogenesis.
Resumo:
Changing the topology of a railway network can greatly affect its capacity. Railway networks however can be altered in a multitude of different ways. As each way has significant immediate and long term financial ramifications, it is a difficult task to decide how and where to expand the network. In response some railway capacity expansion models (RCEM) have been developed to help capacity planning activities, and to remove physical bottlenecks in the current railway system. The exact purpose of these models is to decide given a fixed budget, where track duplications and track sub divisions should be made, in order to increase theoretical capacity most. These models are high level and strategic, and this is why increases to the theoretical capacity is concentrated upon. The optimization models have been applied to a case study to demonstrate their application and their worth. The case study evidently shows how automated approaches of this nature could be a formidable alternative to current manual planning techniques and simulation. If the exact effect of track duplications and sub-divisions can be sufficiently approximated, this approach will be very applicable.
Resumo:
This study presents a comprehensive mathematical formulation model for a short-term open-pit mine block sequencing problem, which considers nearly all relevant technical aspects in open-pit mining. The proposed model aims to obtain the optimum extraction sequences of the original-size (smallest) blocks over short time intervals and in the presence of real-life constraints, including precedence relationship, machine capacity, grade requirements, processing demands and stockpile management. A hybrid branch-and-bound and simulated annealing algorithm is developed to solve the problem. Computational experiments show that the proposed methodology is a promising way to provide quantitative recommendations for mine planning and scheduling engineers.
Resumo:
This work proposes a supermarket optimization simulation model called Swarm-Moves is based on self organized complex system studies to identify parameters and their values that can influence customers to buy more on impulse in a given period of time. In the proposed model, customers are assumed to have trolleys equipped with technology like RFID that can aid the passing of products' information directly from the store to them in real-time and vice-versa. Therefore, they can get the information about other customers purchase patterns and constantly informing the store of their own shopping behavior. This can be easily achieved because the trolleys "know" what products they contain at any point. The Swarm-Moves simulation is the virtual supermarket providing the visual display to run and test the proposed model. The simulation is also flexible to incorporate any given model of customers' behavior tailored to particular supermarket, settings, events or promotions. The results, although preliminary, are promising to use RFID technology for marketing products in supermarkets and provide several dimensions to look for influencing customers via feedback, real-time marketing, target advertisement and on-demand promotions. ©2009 IEEE.
Resumo:
This paper presents two simple simulation and modelling tools designed to aid in the safety assessment required for unmanned aircraft operations within unsegregated airspace. First, a fast pair-wise encounter generator is derived to simulate the See and Avoid environment. The utility of the encounter generator is demonstrated through the development of a hybrid database and a statistical performance evaluation of an autonomous See and Avoid decision and control strategy. Second, an unmanned aircraft mission generator is derived to help visualise the impact of multiple persistent unmanned operations on existing air traffic. The utility of the mission generator is demonstrated through an example analysis of a mixed airspace environment using real traffic data in Australia. These simulation and modelling approaches constitute a useful and extensible set of analysis tools, that can be leveraged to help explore some of the more fundamental and challenging problems facing civilian unmanned aircraft system integration.
Resumo:
The time for conducting Preventive Maintenance (PM) on an asset is often determined using a predefined alarm limit based on trends of a hazard function. In this paper, the authors propose using both hazard and reliability functions to improve the accuracy of the prediction particularly when the failure characteristic of the asset whole life is modelled using different failure distributions for the different stages of the life of the asset. The proposed method is validated using simulations and case studies.