120 resultados para 5-aminosalicilic acid
Resumo:
We hypothesised that a potentially disease-modifying osteoarthritis (OA) drug such as hyaluronic acid (HA) given in combination with anti-inflammatory signalling agents such as mitogen-activated protein kinase kinase–extracellular signal-regulated kinase (MEK-ERK) signalling inhibitor (U0126) could result in additive or synergistic effects on preventing the degeneration of articular cartilage. Chondrocyte differentiation and hypertrophy were evaluated using human OA primary cells treated with either HA or U0126, or the combination of HA + U0126. Cartilage degeneration in menisectomy (MSX) induced rat OA model was investigated by intra-articular delivery of either HA or U0126, or the combination of HA + U0126. Histology, immunostaining, RT-qPCR, Western blotting and zymography were performed to assess the expression of cartilage matrix proteins and hypertrophic markers. Phosphorylated ERK (pERK)1/2-positive chondrocytes were significantly higher in OA samples compared with those in healthy control suggesting the pathological role of that pathway in OA. It was noted that HA + U0126 significantly reduced the levels of pERK, chondrocyte hypertrophic markers (COL10 and RUNX2) and degenerative markers (ADAMTs5 and MMP-13), however, increased the levels of chondrogenic markers (COL2) compared to untreated or the application of HA or U0126 alone. In agreement with the results in vitro, intra-articular delivery of HA + U0126 showed significant therapeutic improvement of cartilage in rat MSX OA model compared with untreated or the application of HA or U0126 alone. Our study suggests that the combination of HA and MEK-ERK inhibition has a synergistic effect on preventing cartilage degeneration.
Resumo:
Background Migraine is a neurological disorder characterized by recurrent attacks of severe headache, affecting around 12% of Caucasian populations. It is well known that migraine has a strong genetic component, although the number and type of genes involved is still unclear. Prior linkage studies have reported mapping of a migraine gene to chromosome Xq 24–28, a region containing a cluster of genes for GABA A receptors (GABRE, GABRA3, GABRQ), which are potential candidate genes for migraine. The GABA neurotransmitter has been implicated in migraine pathophysiology previously; however its exact role has not yet been established, although GABA receptors agonists have been the target of therapeutic developments. The aim of the present research is to investigate the role of the potential candidate genes reported on chromosome Xq 24–28 region in migraine susceptibility. In this study, we have focused on the subunit GABA A receptors type ε (GABRE) and type θ (GABRQ) genes and their involvement in migraine. Methods We have performed an association analysis in a large population of case-controls (275 unrelated Caucasian migraineurs versus 275 controls) examining a set of 3 single nucleotide polymorphisms (SNPs) in the coding region (exons 3, 5 and 9) of the GABRE gene and also the I478F coding variant of the GABRQ gene. Results Our study did not show any association between the examined SNPs in our test population (P > 0.05). Conclusion Although these particular GABA receptor genes did not show positive association, further studies are necessary to consider the role of other GABA receptor genes in migraine susceptibility.
Resumo:
Extracts of Australian plants were screened to detect constituents affecting adenosine di-phosphate (ADP) induced platelet aggregation and [14C]5-hydroxytryptamine (5-HT) release. Extracts of four tested plants including, Eremophila gilesii, Erythrina vespertilio, Cymbopogon ambiguus, and Santalum acuminatum, were found to cause significant inhibition of platelet 5-HT release. Inhibition levels ranged from 56-98%, and was not due to the non-specific effects of protein binding tannins. These extracts, and those we have previously identified as being active, were examined further to determine if they affect epinephrine (EPN), arachidonic acid (A.A) or collagen stimulated platelet aggregation and 5-HT release. Among those extracts investigated, we found that both the methanolic extract of E. vespertilio and the dichloromethane (DCM) extract of C. ambiguus were most potent and caused significant inhibition of platelet activation induced by EPN, A.A and to a lesser extent by collagen. Inhibition of ADP induced platelet 5-HT release by both of these extracts, was dose-dependent, with IC50 values for E. vespertilio and C. ambiguus estimated to be 20.4 microl (1.855 mg/ml) and 8.34 microl (0.758 mg/ml), respectively. Overall, C. ambiguus exhibited most activity and also caused dose-dependent inhibition of A.A induced platelet activation. These results indicate that inhibition may occur specifically at a site within the A.A pathway, and suggest the presence of a cyclo-oxygenase inhibitor. Both E. vespertilio and C. ambiguus are reported to be traditional headache treatments, with the present study providing evidence that they affect 5-HT release.
Resumo:
This article presents a method for making highly porous biodegradable scaffold that may ultimately be used for tissue engineering. Poly(L-lactic-co-1-caprolactone) acid (70:30) (PLCL) scaffold was produced using the solvent casting/leaching out method, which entails dissolving the polymer and adding a porogen that is then leached out by immersing the scaffold in distillated water. Tensile tests were performed for three types of scaffolds, namely pre-wetted, dried, and UV-irradiated scaffolds and their mechanical properties were measured. The prewetted PLCL scaffold possessed a modulus of elasticity 0.92+0.09 MPa, a tensile strength of 0.12+0.03 MPa and an ultimate strain of 23+5.3%. No significant differences in the modulus elasticity, tensile strength, nor ultimate strain were found between the pre-wetted, dried, and UV irradiated scaffolds. The PLCL scaffold was seeded by human fibroblasts in order to evaluate its biocompatibility by Alamar bluew assays. After 10 days of culture, the scaffolds showed good biocompatibility and allowed cell proliferation. However, the fibroblasts stayed essentially at the surface. This study shows the possibility to use the PLCL scaffold in dynamic mechanical conditions for tissue engineering
Resumo:
It was demonstrated recently that dramatic changes in the redox behaviour of gold/aqueous solution interfaces may be observed following either cathodic or thermal electrode pretreatment. Further work on the cathodic pretreatment of gold in acid solution revealed that as the activity of the gold surface was increased, its performance as a substrate for hydrogen gas evolution under constant potential conditions deteriorated. The change in activity of the gold atoms at the interface, which was attributed to a hydrogen embrittlement process (the occurrence of the latter was subsequently checked by surface microscopy), was confirmed, as in earlier work, by the appearance of a substantial anodic peak at ca. 0.5 V (RHE) in a post-activation positive sweep. Changes in the catalytic activity of a metal surface reflect the fact that the structure (or topography), thermodynamic activity and electronic properties of a surface are dependent not only on pretreatment but also, in the case of the hydrogen evolution reaction, vary with time during the course of reaction. As will be reported shortly, similar (and often more dramatic) time-dependent behaviour was observed for hydrogen gas evolution on other metal electrodes.
Resumo:
An analytical evaluation of the higher ac harmonic components derived from large amplitude Fourier transformed voltammetry is provided for the reversible oxidation of ferrocenemethanol (FcMeOH) and oxidation of uric acid by an EEC mechanism in a pH 7.4 phosphate buffer at a glassy carbon (GC) electrode. The small background current in the analytically optimal fifth harmonic is predominantly attributed to faradaic current associated with the presence of electroactive functional groups on the GC electrode surface, rather than to capacitive current which dominates the background in the dc, and the initial three ac harmonics. The detection limits for the dc and the first to fifth harmonic ac components are 1.9, 5.89, 2.1, 2.5, 0.8, and 0.5 µM for FcMeOH, respectively, using a sine wave modulation of 100 mV at 21.46 Hz and a dc sweep rate of 111.76 mV s−1. Analytical performance then progressively deteriorates in the sixth and higher harmonics. For the determination of uric acid, the capacitive background current was enhanced and the reproducibility lowered by the presence of surface active uric acid, but the rapid overall 2e− rather than 1e– electron transfer process gives rise to a significantly enhanced fifth harmonic faradaic current which enabled a detection limit of 0.3 µM to be achieved which is similar to that reported using chemically modified electrodes. Resolution of overlapping voltammetric signals for a mixture of uric acid and dopamine is also achieved using higher fourth or fifth harmonic components, under very low background current conditions. The use of higher fourth and fifth harmonics exhibiting highly favorable faradaic to background (noise) current ratios should therefore be considered in analytical applications under circumstances where the electron transfer rate is fast.
Resumo:
The complete nucleotide sequence of the genome segment 5 (S5) of a Thai isolate of rice ragged stunt virus (RRSV) was determined. The 2682 nucleotide sequence contains a single long open reading frame capable of encoding a polypeptide with a molecular mass of ~91 kDa. Polypeptides encoded by various truncated cDNAs of S5 were expressed using the pGEX fusion protein vector and the highest level of fusion protein was obtained from a construct encoding a hydrophilic region of S5 protein. Antibodies raised against this fusion protein recognized a minor polypeptide, with a molecular mass of ~ 91 kDa, that was present in purified preparations of RRSV particles, infected insect vectors and infected rice plants. This indicates that RRSV S5 encodes a minor structural protein. Comparing the RRSV S5 sequence with sequences of other reo-viruses did not reveal any significant sequence similarities.
Resumo:
Five anthranilic acid derivatives, a mixture I of three new compounds 11′-hexadecenoylanthranilic acid (1), 9′-hexadecenoylanthranilic acid (2), and 7′-hexadecenoylanthranilic acid (3), as well as a new compound 9,12,15-octadecatrienoylanthranilic acid (4) together with a new natural product, hexadecanoylanthranilic acid (5), were isolated from Geijera parviflora Lindl. (Rutaceae). Their structures were elucidated by extensive spectroscopic measurements, and the positions of the double bonds in compounds 1-3 of the mixture I were determined by tandem mass spectrometry employing ozone-induced dissociation. The mixture I and compound 5 showed good antibacterial activity against several Gram-positive strains. © 2013 Elsevier B.V.
Resumo:
Pyrido[1,2-a]benzimidazoles1, 2a are interesting compounds both from the viewpoint of medicinal chemistry2–7 (solubility,7 DNA intercalation3) and materials chemistry8 (fluorescence). Of note among the former is the antibiotic drug Rifaximin,5 which contains this heteroaromatic core. The classical synthetic approach for the assembly of pyrido[1,2-a]benzimidazoles is by [3+3] cyclocondensation of benzimidazoles containing a methylene group at C2 with appropriate bielectrophiles.2a However, these procedures are often low-yielding, involve indirect/lengthy sequences, and/or provide access to a limited range of products, primarily providing derivatives with substituents located on the pyridine ring (A ring, Scheme 1).2–4 Theoretically, a good alternative synthetic method for the synthesis of pyrido[1,2-a]benzimidazoles with substituents in the benzene ring (C ring) should be accessible by intramolecular transition-metal-catalyzed CN bond formation in N-(2-chloroaryl)pyridin-2-amines, based on chemistry recently developed in our research group.9 These substrates themselves are easily available through SNAr or selective Pd-catalyzed amination10 of 2-chloropyridine with 2-chloroanilines.11 If a synthetic procedure that eliminated the need for preactivation of the 2-position of the 2-chloroarylamino entity could be developed, this would be even more powerful, as anilines are more readily commercially available than 2-chloroanilines. Therefore the synthesis of pyrido[1,2-a]benzimidazoles (4) by a transition-metal-catalyzed intramolecular CH amination approach from N-arylpyridin-2-amines (3) was explored (Scheme 1).
Resumo:
In the structure of the title complex [Cs(C8H4Cl3O2)(H2O)]n, the Cs salt of the commercial herbicide fenac [(2,3,6-trichlorophenyl)acetic acid], the irregular eight-coordination about Cs+ comprises a bidentate chelate (O:Cl) interaction involving a carboxyl O-atom and an ortho-related ring substituted Cl atom which is also bridging, a triple-bridging carboxyl O-atom and a bridging water molecule. A two-dimensional sheet polymer is generated, lying parallel to (100), within which there are water O---H...O(carboxyl) hydrogen-bonding interactions.
Resumo:
In the structure of the title complex [Cs(C7H4N2O2)(H2O)2]n, the Cs salt of 4-nitrobenzoic acid, the irregular CsO9 coordination sphere comprises three bridging nitro O-donors, a bidentate carboxyl (O,O')-chelate interaction, a triple-bridging water molecule and a monodentate water molecule. A three-dimensional framework polymer is generated, within which there are water O-H...Ocarboxyl and water O-H...O(water) hydrogen-bonding interactions.
Resumo:
In the title compound, [K2(C7H3Cl2O2)2(H2O)]n, the potassium salt of 2,4-dichlorobenzoic acid, the repeating unit in the polymeric structure consists of two identical irregular KO6Cl complex units related by twofold rotational symmetry, linked by a bridging water molecule lying on the twofold axis. The coordination polyhedron about each K+ comprises a carboxyl O-atom and a Cl-atom donor from a bidentate chelate ligand interaction, four O-atom donors from a doubly bridging bidentate carboxyl (O,O')-chelate interaction and the water molecule. A two-dimensional layered coordination polymer structure lying parallel to (100) is generated through a series of conjoined cyclic bridges between K centres and is stabilized by water O-H...O(carboxyl) hydrogen-bonding interactions.
Resumo:
Objective There are no objective ambulatory studies on the temporal relationship between reflux and cough in children. Commercial pHmetry loggers have slow capture rates (0.25 Hz) that limit objective quantification of reflux and cough. The authors aimed to evaluate if there is a temporal association between cough and acid pH in ambulatory children with chronic cough. setting and patients The authors studied children (aged <14 years) with chronic cough, suspected of acid reflux and considered for pHmetry using a specifically built ambulatory pHmetry–cough logger that enabled the simultaneous ambulatory recording of cough and pH with a fast (10 Hz) capture rate. Main outcome measures Coughs within (before and after) 10, 30, 60 and 120 s of a reflux episode (pH<4 for >0.5 s). Results Analysis of 5628 coughs in 20 children. Most coughs (83.9%) were independent of a reflux event. Cough–reflux (median 19, IQR 3–45) and reflux–cough (24.5, 13–51) sequences were equally likely to occur within 120 s. Within the 10 and 30 s time frame, reflux–cough (10 s=median 2.5, IQR 0–7.25; 30 s=6.5, 1.25–22.25) sequences were significantly less frequent than reflux–no cough (10 s=27, IQR 15–65; 30 s=24.5, 14.5–55.5) sequences, (p=0.0001 and p=0.001, respectively). No differences were found for 60 and 120 s time frame. Cough–reflux sequence (median 1.0, IQR 0–8) within 10 s was significantly less (p=0.0001) than no cough–reflux sequences (median 29.5, 15–67), within 30 s (p=0.006) and 60 s (p=0.048) but not within 120 s (p=0.47). Conclusions In children with chronic cough and suspected of having gastro-oesophageal reflux disease, the temporal relationship between acid reflux and cough is unlikely causal.
Resumo:
The structures of the 1:1 hydrated proton-transfer compounds of isonipecotamide (piperidine-4-carboxamide) with oxalic acid, 4-carbamoylpiperidinium hydrogen oxalate dihydrate, C6H13N2O+·C2HO4-·2H2O, (I), and with adipic acid, bis(4-carbamoylpiperidinium) adipate dihydrate, 2C6H13N2O+·C6H8O42-·2H2O, (II), are three-dimensional hydrogen-bonded constructs involving several different types of enlarged water-bridged cyclic associations. In the structure of (I), the oxalate monoanions give head-to-tail carboxylic acid O-HOcarboxyl hydrogen-bonding interactions, forming C(5) chain substructures which extend along a. The isonipecotamide cations also give parallel chain substructures through amide N-HO hydrogen bonds, the chains being linked across b and down c by alternating water bridges involving both carboxyl and amide O-atom acceptors and amide and piperidinium N-HOcarboxyl hydrogen bonds, generating cyclic R43(10) and R32(11) motifs. In the structure of (II), the asymmetric unit comprises a piperidinium cation, half an adipate dianion, which lies across a crystallographic inversion centre, and a solvent water molecule. In the crystal structure, the two inversion-related cations are interlinked through the two water molecules, which act as acceptors in dual amide N-HOwater hydrogen bonds, to give a cyclic R42(8) association which is conjoined with an R44(12) motif. Further N-HOwater, water O-HOamide and piperidinium N-HOcarboxyl hydrogen bonds give the overall three-dimensional structure. The structures reported here further demonstrate the utility of the isonipecotamide cation as a synthon for the generation of stable hydrogen-bonded structures. The presence of solvent water molecules in these structures is largely responsible for the non-occurrence of the common hydrogen-bonded amide-amide dimer, promoting instead various expanded cyclic hydrogen-bonding motifs.
Resumo:
The structures of the hydrated sodium salts of 4-chloro-3-nitrobenzoic acid {poly[aqua(μ4-4-chloro-3-nitrobenzoato)sodium(I)], [Na(C7H3ClNO4)(H2O)]n, (I)} and 2-amino-4-nitrobenzoic acid {poly[μ-aqua-aqua(μ3-2-amino-4-nitrobenzoato)sodium(I)], [Na(C7H5N2O4)(H2O)2]n, (II)}, and the hydrated potassium salt of 2-amino-4-nitrobenzoic acid {poly[μ-aqua-aqua(μ5-2-amino-4-nitrobenzoato)potassium(I)], [K(C7H5N2O4)(H2O)]n, (III)} have been determined and their complex polymeric structures described. All three structures are stabilized by intra- and intermolecular hydrogen bonding and strong π–π ring interactions. In the structure of (I), the distorted trigonal bipyrimidal NaO5 coordination polyhedron comprises a monodentate water molecule and four bridging carboxylate O-atom donors, generating a two-dimensional polymeric structure lying parallel to (001). Intra-layer hydrogen-bonding associations and strong inter-ring π–π interactions are present. Structure (II) has a distorted octahedral NaO6 stereochemistry, with four bridging O-atom donors, two from a single carboxylate group and two from a single nitro group and three from the two water molecules, one of which is bridging. Na centres are linked through centrosymmetric four-membered duplex water bridges and through 18-membered duplex head-to-tail ligand bridges. Similar centrosymmetric bridges are found in the structure of (III), and in both (II) and (III) strong inter-ring π–π interactions are found. A two-dimensional layered structure lying parallel to (010) is generated in (II), whereas in (III) the structure is three-dimensional. With (III), the irregular KO7 coordination polyhedron comprises a doubly bridging water molecule, a single bidentate bridging carboxylate O-atom donor and three bridging O-atom donors from the two nitro groups. A three-dimensional structure is generated. These coordination polymer structures are among the few examples of metal complexes of any type with either 4-chloro-3-nitrobenzoic acid or 4-nitroanthranilic acid.