419 resultados para 1145
Resumo:
A vast proportion of companies nowadays are looking to design and are focusing on the end users as a means of driving new projects. However still many companies are drawn to technological improvements which drive innovation within their industry context. The Australian livestock industry is no different. To date the adoption of new products and services within the livestock industry has been documented as being quite slow. This paper investigates how disruptive innovation should be a priority for these technologically focused companies and demonstrates how the use of design led innovation can bring about a higher quality engagement between end user and company alike. A case study linking participatory design and design thinking is presented. Within this, a conceptual model of presenting future scenarios to internal and external stakeholders is applied to the livestock industry; assisting companies to apply strategy, culture and advancement in meaningful product offerings to consumers.
Resumo:
We consider the problem of choosing, sequentially, a map which assigns elements of a set A to a few elements of a set B. On each round, the algorithm suffers some cost associated with the chosen assignment, and the goal is to minimize the cumulative loss of these choices relative to the best map on the entire sequence. Even though the offline problem of finding the best map is provably hard, we show that there is an equivalent online approximation algorithm, Randomized Map Prediction (RMP), that is efficient and performs nearly as well. While drawing upon results from the "Online Prediction with Expert Advice" setting, we show how RMP can be utilized as an online approach to several standard batch problems. We apply RMP to online clustering as well as online feature selection and, surprisingly, RMP often outperforms the standard batch algorithms on these problems.
Resumo:
Machine learning has become a valuable tool for detecting and preventing malicious activity. However, as more applications employ machine learning techniques in adversarial decision-making situations, increasingly powerful attacks become possible against machine learning systems. In this paper, we present three broad research directions towards the end of developing truly secure learning. First, we suggest that finding bounds on adversarial influence is important to understand the limits of what an attacker can and cannot do to a learning system. Second, we investigate the value of adversarial capabilities-the success of an attack depends largely on what types of information and influence the attacker has. Finally, we propose directions in technologies for secure learning and suggest lines of investigation into secure techniques for learning in adversarial environments. We intend this paper to foster discussion about the security of machine learning, and we believe that the research directions we propose represent the most important directions to pursue in the quest for secure learning.
Resumo:
The problem of decision making in an uncertain environment arises in many diverse contexts: deciding whether to keep a hard drive spinning in a net-book; choosing which advertisement to post to a Web site visitor; choosing how many newspapers to order so as to maximize profits; or choosing a route to recommend to a driver given limited and possibly out-of-date information about traffic conditions. All are sequential decision problems, since earlier decisions affect subsequent performance; all require adaptive approaches, since they involve significant uncertainty. The key issue in effectively solving problems like these is known as the exploration/exploitation trade-off: If I am at a cross-roads, when should I go in the most advantageous direction among those that I have already explored, and when should I strike out in a new direction, in the hopes I will discover something better?
Resumo:
In this paper, we propose a search-based approach to join two tables in the absence of clean join attributes. Non-structured documents from the web are used to express the correlations between a given query and a reference list. To implement this approach, a major challenge we meet is how to efficiently determine the number of times and the locations of each clean reference from the reference list that is approximately mentioned in the retrieved documents. We formalize the Approximate Membership Localization (AML) problem and propose an efficient partial pruning algorithm to solve it. A study using real-word data sets demonstrates the effectiveness of our search-based approach, and the efficiency of our AML algorithm.
Resumo:
The concept of system use has suffered from a "too simplistic definition" (DeLone and McLean [9], p. 16). This paper reviews various attempts at conceptualization and measurement of system use and then proposes a re-conceptualization of it as "the level of incorporation of an information system within a user's processes." We then go on to develop the concept of a Functional Interface Point and four dimensions of system usage: automation level, the proportion of the business process encoded by the information system; extent, the proportion of the FIPs used by the business process; frequency, the rate at which FIPs are used by the participants in the process; and thoroughness, the level of use of information/functionality provided by the system at an FIP. The article concludes with a discussion of some implications of this re-conceptualization and areas for follow on research.
Resumo:
We have designed a mobile application that takes advantage of the built-in features of smart phones such as camera and GPS that allow users to take geo-tagged photos while on the move. Urban residents can take pictures of broken street furniture and public property requiring repair, attach a brief description, and submit the information as a maintenance request to the local government organisation of their city. This paper discusses the design approach that led to the application, highlights a built-in mechanism to elicit user feedback, and evaluates the progress to date with user feedback and log statistics. It concludes with an outlook highlighting user requested features and our own design aspirations for moving from a reporting tool to a civic engagement tool.
Resumo:
People interact with mobile computing devices everywhere, while sitting, walking, running or even driving. Adapting the interface to suit these contexts is important, thus this paper proposes a simple human activity classification system. Our approach uses a vector magnitude recognition technique to detect and classify when a person is stationary (or not walking), casually walking, or jogging, without any prior training. The user study has confirmed the accuracy.
Resumo:
Adding game elements to an application to motivate use and enhance the user experience is a growing trend known as gamification. This study explores the use of game achievements when applied to a mobile application designed to help new students at university. This paper describes the foundations of a design framework used to integrate game elements to Orientation Passport, a personalised orientation event application for smart phones. Orientation Passport utilises game achievements to present orientation information in an engaging way and to encourage use of the application. The system is explained in terms of the design framework, and the findings of a pilot study involving 26 new students are presented. This study contributes the foundations of a design framework for general gamified achievement design. It also suggests that added game elements can be enjoyable but can potentially encourage undesirable use by some, and aren't as enjoyable if not enforced properly by the technology. Consideration is also needed when enforcing stricter game rules as usability can be affected.
Resumo:
To sustain an ongoing rapid growth of video information, there is an emerging demand for a sophisticated content-based video indexing system. However, current video indexing solutions are still immature and lack of any standard. This doctoral consists of a research work based on an integrated multi-modal approach for sports video indexing and retrieval. By combining specific features extractable from multiple audio-visual modalities, generic structure and specific events can be detected and classified. During browsing and retrieval, users will benefit from the integration of high-level semantic and some descriptive mid-level features such as whistle and close-up view of player(s).
Resumo:
Language Modeling (LM) has been successfully applied to Information Retrieval (IR). However, most of the existing LM approaches only rely on term occurrences in documents, queries and document collections. In traditional unigram based models, terms (or words) are usually considered to be independent. In some recent studies, dependence models have been proposed to incorporate term relationships into LM, so that links can be created between words in the same sentence, and term relationships (e.g. synonymy) can be used to expand the document model. In this study, we further extend this family of dependence models in the following two ways: (1) Term relationships are used to expand query model instead of document model, so that query expansion process can be naturally implemented; (2) We exploit more sophisticated inferential relationships extracted with Information Flow (IF). Information flow relationships are not simply pairwise term relationships as those used in previous studies, but are between a set of terms and another term. They allow for context-dependent query expansion. Our experiments conducted on TREC collections show that we can obtain large and significant improvements with our approach. This study shows that LM is an appropriate framework to implement effective query expansion.